一支車(chē)隊(duì)有15輛車(chē),某天依次出發(fā)執(zhí)行運(yùn)輸任務(wù),第一輛車(chē)于下午2時(shí)出發(fā),第二輛車(chē)于下午2時(shí)10分出發(fā),第三輛車(chē)于下午2時(shí)20分出發(fā),依此類(lèi)推。假設(shè)所有的司機(jī)都連續(xù)開(kāi)車(chē),并都在下午6時(shí)停下來(lái)休息。
(1)到下午6時(shí)最后一輛車(chē)行駛了多長(zhǎng)時(shí)間?
(2)如果每輛車(chē)的行駛速度都是60,這個(gè)車(chē)隊(duì)當(dāng)天一共行駛了多少千米?
(1)小時(shí)(1時(shí)40分)  (2)
第一問(wèn)中,利用第一輛車(chē)出發(fā)時(shí)間為下午2時(shí),每隔10分鐘即小時(shí)出發(fā)一輛
則第15輛車(chē)在小時(shí),最后一輛車(chē)出發(fā)時(shí)間為:小時(shí)
第15輛車(chē)行駛時(shí)間為:小時(shí)(1時(shí)40分)
第二問(wèn)中,設(shè)每輛車(chē)行駛的時(shí)間為:,由題意得到
是以為首項(xiàng),為公差的等差數(shù)列
則行駛的總時(shí)間為:
則行駛的總里程為:運(yùn)用等差數(shù)列求和得到。
解:(1)第一輛車(chē)出發(fā)時(shí)間為下午2時(shí),每隔10分鐘即小時(shí)出發(fā)一輛
則第15輛車(chē)在小時(shí),最后一輛車(chē)出發(fā)時(shí)間為:小時(shí)
第15輛車(chē)行駛時(shí)間為:小時(shí)(1時(shí)40分)        ……5分
(2)設(shè)每輛車(chē)行駛的時(shí)間為:,由題意得到
是以為首項(xiàng),為公差的等差數(shù)列
則行駛的總時(shí)間為:   ……10分
則行駛的總里程為:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知各項(xiàng)都不為零的數(shù)列的前n項(xiàng)和為,,向量,其中N*,且
(Ⅰ)求數(shù)列的通項(xiàng)公式及;
(Ⅱ)若數(shù)列的前n項(xiàng)和為,且(其中是首項(xiàng),第四項(xiàng)為的等比數(shù)列的公比),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分)
設(shè)等差數(shù)列的前項(xiàng)和為,等比數(shù)列的前項(xiàng)和為已知數(shù)列的公比為
(1)求數(shù)列,的通項(xiàng)公式;
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式; (2)令,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下列結(jié)論正確的是(         )(寫(xiě)出所有正確結(jié)論的序號(hào))
⑴常數(shù)列既是等差數(shù)列,又是等比數(shù)列;
⑵若直角三角形的三邊、、成等差數(shù)列,則、、之比為;
⑶若三角形的三內(nèi)角、、成等差數(shù)列,則
⑷若數(shù)列的前項(xiàng)和為,則的通項(xiàng)公式;
⑸若數(shù)列的前項(xiàng)和為,則為等比數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列中,如果數(shù)列是等差數(shù)列,則 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列,的前項(xiàng)和分別為,,若,則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中角、成等差數(shù)列,則=(  )
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)等差數(shù)列的前n項(xiàng)和,若( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案