【題目】已知對(duì)數(shù)函數(shù)過定點(diǎn)(其中),函數(shù)(其中為的導(dǎo)函數(shù),,為常數(shù))
(1)討論的單調(diào)性;
(2)若對(duì)有恒成立,且在()處的導(dǎo)數(shù)相等,求證:.
【答案】(1)當(dāng)時(shí),在單調(diào)遞減;當(dāng)時(shí)在單調(diào)遞增,在單調(diào)遞減(2)證明見解析
【解析】
(1)求出的解析式,得到,利用分類討論法研究的單調(diào)性;
(2)根據(jù)(1)可知,得到和的解析式,利用求得,結(jié)合基本不等式得到,令,則可換元為,最后利用導(dǎo)數(shù)求出的最小值即可得證.
(1)令(且),將定點(diǎn)代入解得,
所以,,
所以,(),
當(dāng)時(shí),在時(shí)恒成立,即在單調(diào)遞減;
當(dāng)時(shí),,
即在單調(diào)遞增,在單調(diào)遞減;
綜上所述:當(dāng)時(shí),在單調(diào)遞減;
當(dāng)時(shí)在單調(diào)遞增,在單調(diào)遞減.
(2)因?yàn)?/span>,而有恒成立,
所以,
由(1)知必有,
∴,,
,
設(shè),即,∴,
,
∴,
令,,
∴(),
∴在上單調(diào)遞增,
∴,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從拋物線上各點(diǎn)向x軸作垂線,垂線段中點(diǎn)的軌跡為E.
(1)求曲線E的方程;
(2)若直線與曲線E相交于A,B兩點(diǎn),求證:;
(3)若點(diǎn)F為曲線E的焦點(diǎn),過點(diǎn)的直線與曲線E交于M,N兩點(diǎn),直線,分別與曲線E交于C,D兩點(diǎn),設(shè)直線,斜率分別為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),總有,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線與拋物線交于為拋物線上一點(diǎn).
(1)若,求
(2)已知點(diǎn),過點(diǎn)作直線分別交曲線于,證明:在點(diǎn)運(yùn)動(dòng)過程中,直線始終過定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】誠(chéng)信是立身之本,道德之基,我校學(xué)生會(huì)創(chuàng)設(shè)了“誠(chéng)信水站”,既便于學(xué)生用水,又推進(jìn)誠(chéng)信教育,并用“”表示每周“水站誠(chéng)信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個(gè)周期)的誠(chéng)信數(shù)據(jù)統(tǒng)計(jì):
第一周 | 第二周 | 第三周 | 第四周 | |
第一周期 | ||||
第二周期 | ||||
第三周期 |
(Ⅰ)計(jì)算表中十二周“水站誠(chéng)信度”的平均數(shù);
(Ⅱ)若定義水站誠(chéng)信度高于的為“高誠(chéng)信度”,以下為“一般信度”則從每個(gè)周期的前兩周中隨機(jī)抽取兩周進(jìn)行調(diào)研,計(jì)算恰有兩周是“高誠(chéng)信度”的概率;
(Ⅲ)已知學(xué)生會(huì)分別在第一個(gè)周期的第四周末和第二個(gè)周期的第四周末各舉行了一次“以誠(chéng)信為本”的主題教育活動(dòng),根據(jù)已有數(shù)據(jù),說明兩次主題教育活動(dòng)的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】絕大部分人都有患呼吸系統(tǒng)疾病的經(jīng)歷,現(xiàn)在我們調(diào)查患呼吸系統(tǒng)疾病是否和所處環(huán)境有關(guān).一共調(diào)查了人,患有呼吸系統(tǒng)疾病的人,其中人在室外工作,人在室內(nèi)工作.沒有患呼吸系統(tǒng)疾病的人,其中人在室外工作,人在室內(nèi)工作.
(1)現(xiàn)采用分層抽樣從室內(nèi)工作的居民中抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中隨機(jī)的抽取兩人,求兩人都有呼吸系統(tǒng)疾病的概率.
(2)你能否在犯錯(cuò)誤率不超過的前提下認(rèn)為感染呼吸系統(tǒng)疾病與工作場(chǎng)所有關(guān);
附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓:的離心率為,y軸于橢圓相交于A、B兩點(diǎn),,C、D是橢圓上異于A、B的任意兩點(diǎn),且直線AC、BD相交于點(diǎn)M,直線AD、BC相交于點(diǎn)N.
求橢圓的方程;
求直線MN的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭記錄了未使用節(jié)水龍頭30天的日用水量數(shù)據(jù)(單位:)和使用了節(jié)水龍頭30天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:
(一)未使用節(jié)水龍頭30天的日用水量頻數(shù)分布表
日用水量 | |||||
頻數(shù) | 2 | 3 | 8 | 12 | 5 |
(二)使用了節(jié)水龍頭30天的日用水量頻數(shù)分布表
日用水量 | |||||
頻數(shù) | 2 | 5 | 11 | 6 | 6 |
(1)估計(jì)該家庭使用了節(jié)水龍頭后,日用水量小于的概率;
(2)估計(jì)該家庭使用節(jié)水龍頭后,平均每天能節(jié)省多少水?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com