函數(shù)f(x)=xex-a有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、-
1
e
<a<0
B、a>-
1
e
C、-e<a<0
D、0<a<e
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出函數(shù)的導(dǎo)函數(shù),求出函數(shù)的最小值,根據(jù)函數(shù)的零點(diǎn)和最值關(guān)系即可得到結(jié)論.
解答: 解:∵函數(shù)f(x)=xex-a的導(dǎo)函數(shù)f′(x)=(x+1)ex,
令f′(x)=0,則x=-1
∵當(dāng)x∈(-∞,-1)時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(-1,+∞)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增;
故當(dāng)x=-1時(shí),函數(shù)取最小值f(-1)=-e-1-a
若函數(shù)f(x)=xex-a有兩個(gè)零點(diǎn),
則f(-1)=-e-1-a<0
即a>-
1
e
,
又∵a≥0時(shí),x∈(-∞,-1)時(shí),f(x)=xex-a<0恒成立,不存在零點(diǎn)
故a<0
綜上,-
1
e
<a<0,
故選:A
點(diǎn)評:本題考查的知識點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,其中熟練掌握函數(shù)零點(diǎn)與方程根之間的對應(yīng)關(guān)系是解答的關(guān)鍵,利用導(dǎo)數(shù)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-1+log(n+1)(x+1)經(jīng)過的定點(diǎn)(與m無關(guān))恰為拋物線y=ax2的焦點(diǎn),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,直線θ=
π
6
截圓ρ=2cos
π
6
(ρ∈R)所得的弦長是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個(gè)命題:
①方程x2+(a-3)x+a=0有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則a<0;
②函數(shù)y=
x2-1
+
1-x2
是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x)的定義域是[-2,2],則函數(shù)f(x+1)的定義域?yàn)閇-1,3];
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點(diǎn)個(gè)數(shù)是m,則m的值不可能是1.
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:p:
1
x2-x-6
<0,q:x2-2x-3<0,則¬p是¬q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出四個(gè)命題:
①各側(cè)面都是正方形的棱柱一定是正棱柱;
②各對角面是全等矩形的平行六面體一定是長方體;
③有兩個(gè)側(cè)面垂直于底面的棱柱一定是直棱柱;
④長方體一定是正四棱柱.
其中正確命題的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a與b是異面直線,下列命題正確的是( 。
A、有且僅有一條直線與a,b都垂直
B、過直線a有且僅有一個(gè)平面b平行
C、有平面與a,b都垂直
D、過空間任意一點(diǎn)必可作一直線與a,b相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)棱長都為a的直三棱柱的六個(gè)頂點(diǎn)全部在同一個(gè)球面上,則該球的表面積為( 。
A、
7
3
πa2
B、2πα2
C、
11
4
πα2
D、
4
3
πα2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,AD是△ABC外角∠EAC的平分線,AD與△ABC的外接圓交于點(diǎn)D,N為BC延長線上一點(diǎn),ND交△ABC的外接圓于點(diǎn)M.求證:
(1)DB=DC;
(2)DC2=DM•DN.

查看答案和解析>>

同步練習(xí)冊答案