11.把下列各角化成2kπ+α(0≤α<2π,k∈Z)的形式,并指出他們是第幾象限的角:
(1)$\frac{101π}{3}$;
(2)-10;
(3)880°;
(4)-420°;
(5)1410°.

分析 直接把各角化為2kπ+α(0≤α<2π,k∈Z)的形式得答案.

解答 解:(1)$\frac{101π}{3}$=32π+$\frac{5π}{3}$,是第四象限角;
(2)-10=-4π+(4π-10),是第一象限角;
(3)880°=720°+160°,是第二象限角;
(4)-420°=-720°+300°,是第四象限角;
(5)1410°=1080°+330°,是第四象限角.

點(diǎn)評(píng) 本題考查象限角和軸線角,考查了終邊相同角的概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.全集U={0,-1,-2,-3},M={0,-1,-3},N={0,-3},則(∁UM)∪N=( 。
A.B.{-2}C.{-1,-3}D.{0,-2,-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.給定兩個(gè)命題,命題p:對(duì)于任意實(shí)數(shù)x,都有ax2>-2ax-4恒成立;命題q:方程x2+y2-2x+a=0表示一個(gè)圓.若“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.命題“?x∈R,x3-x≥0”的否定是(  )
A.?x∈R,x3-x<0B.?x∈R,x3-x≥0C.?x∈R,x3-x>0D.?x∈R,x3-x<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x2-4x+c只有一個(gè)零點(diǎn),且函數(shù)g(x)=x(f(x)+mx-5)在(2,3)上不是單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是-$\frac{1}{3}$$<m<\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.命題p:$\left\{\begin{array}{l}{a>1}\\{b>1}\end{array}\right.$,是$\left\{\begin{array}{l}{a+b>2}\\{ab>1}\end{array}\right.$,的充要條件,命題q:$\left\{\begin{array}{l}{a>b>0}\\{m>0}\end{array}\right.$,是$\frac{b+m}{a+m}$>$\frac{a}$的充分條件,則下列命題中的真命題是( 。
A.p∧qB.p∨qC.p∨(¬q)D.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,若tanA=-$\frac{3}{4}$,則sinA+cosA=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表
廣 告 費(fèi) 用x (萬元)4235
銷 售 額y (萬元)4926a54
已知由表中4組數(shù)據(jù)求得回歸直線方程$\stackrel{∧}{y}$=8x+14,則表中的a的值為( 。
A.37B.38C.39D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.隨著學(xué)習(xí)的深入我們發(fā)現(xiàn)很多對(duì)事物的看法已經(jīng)顛覆了我們傳統(tǒng)的認(rèn)識(shí),例如直線與曲線有且只有一個(gè)交點(diǎn)并不能說直線是曲線的切線,曲線的切線與曲線的切點(diǎn)也不一定只有一個(gè).若在曲線f(x,y)=0上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0的“自公切線”.下列方程:①x2-y2=1;②y=x2-|x|,③y=3sinx+4cosx;④|x|+1=$\sqrt{4-{y}^{2}}$對(duì)應(yīng)的曲線中存在“自公切線”的有( 。
A.①②B.③④C.①④D.②③

查看答案和解析>>

同步練習(xí)冊(cè)答案