16.已知函數(shù)f(x)=|x-1|+|3x-$\frac{3}{4}$|.
(1)求不等式f(x)<1的解集;
(2)若實數(shù)a,b,c滿足a>0,b>0,c>0且a+b+c=$\frac{3}{2}$.求證:$\frac{^{2}}{a}$+$\frac{{c}^{2}}$+$\frac{{a}^{2}}{c}$≥$\frac{3}{2}$.

分析 (1)通過討論x的范圍求出不等式的解集即可;(2)根據(jù)基本不等式的性質(zhì)證明即可.

解答 解:(1)由f(x)<1,得|x-1|+|3x-$\frac{3}{4}$|<1可化為:
$\left\{\begin{array}{l}{x≤\frac{1}{4}}\\{\frac{7}{4}-4x<1}\end{array}\right.$或$\left\{\begin{array}{l}{\frac{1}{4}<x<1}\\{2x+\frac{1}{4}<1}\end{array}\right.$或$\left\{\begin{array}{l}{x≥1}\\{4x-\frac{7}{4}<1}\end{array}\right.$,
得$\frac{3}{16}$<x<$\frac{3}{8}$,
所以f(x)<1的解集為:{x|$\frac{3}{16}$<x<$\frac{3}{8}$};
(2)因為a+b+c=$\frac{3}{2}$,
所以:$\frac{^{2}}{a}$+a+$\frac{{c}^{2}}$+b+$\frac{{a}^{2}}{c}$+c≥2(a+b+c)=3,
所以:$\frac{^{2}}{a}$+$\frac{{c}^{2}}$+$\frac{{a}^{2}}{c}$≥$\frac{3}{2}$.

點評 本題考查了解絕對值不等式問題,考查基本不等式的性質(zhì),是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),若對任意x∈(0,+∞),都有$f[f(x)-\frac{1}{x}]=2$,則$f(\frac{1}{7})$的值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)=$\frac{x+1}{x}$,則f(1)等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知棱長都是2的直三棱柱的俯視圖是一個正三角形,則該直三棱柱的主視圖的面積不可能等于(  )
A.4B.2$\sqrt{3}$C.$\frac{19}{5}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在四棱臺ABCD-A1B1C1D1中,平面BCC1B1⊥平面ABCD,四邊形ABCD為平行四邊形,四邊形BCC1B1為等腰梯形,BC=4,B1C1=C1C=2,AB=5,AC⊥BC.
(1)求證:BC1⊥平面ACC1
(2)求直線BC1與平面ADD1A1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知直線l:xcosθ+ysinθ=cosθ與y2=4x交于A、B兩點,F(xiàn)為拋物線的焦點,則$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設集合A=R,集合B={y|y>0},下列對應關系中是從集合A到集合B的映射的是( 。
A.x→y=|x|B.x→y=$\frac{1}{{{{({x-1})}^2}}}$C.$x→y={({\frac{1}{2}})^x}$D.$x→y=\sqrt{{{({\frac{1}{2}})}^x}-1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若點(x,y)在雙曲線$\frac{{x}^{2}}{4}$-y2=1上,則3x2-2xy的最小值是6+4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.求證:$\frac{4}{9}$>log52>$\frac{2}{5}$.

查看答案和解析>>

同步練習冊答案