11.如圖幾何體由前向后方向的正投影面是平面EFGH,則該幾何體的主視圖是( 。
A.B.C.D.

分析 由題意,幾何體由前向后方向的正投影面是平面EFGH,即可得出結(jié)論.

解答 解:由題意,幾何體由前向后方向的正投影面是平面EFGH,
∴該幾何體的主視圖是,
故選C.

點(diǎn)評(píng) 本題考點(diǎn)是簡單空間圖形的三視圖,考查根據(jù)作三視圖的規(guī)則來作出三個(gè)視圖的能力,三視圖的投影規(guī)則是:“主視、俯視 長對(duì)正;主視、左視高平齊,左視、俯視 寬相等”.三視圖是高考的新增考點(diǎn),不時(shí)出現(xiàn)在高考試題中,應(yīng)予以重視.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某種種子每粒發(fā)芽的概率都為0.95,現(xiàn)播種了1000粒,對(duì)于沒有發(fā)芽的種子,每粒需再補(bǔ)種2粒,補(bǔ)種的種子數(shù)記為X,則X的數(shù)學(xué)期望為( 。
A.50B.100C.150D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)平面直角坐標(biāo)系的原點(diǎn)為O,直線l的方程為$\left\{\begin{array}{l}{x=2-t}\\{y=\sqrt{3}+t}\end{array}\right.$(t為參數(shù)),以O(shè)為極點(diǎn),x軸正方向?yàn)闃O軸正方向建立極坐標(biāo)系,兩坐標(biāo)系的單位長度相等.動(dòng)點(diǎn)M(ρ,θ)(ρ>0)且ρ=4cos(θ-$\frac{π}{3}$).
(1)求直角坐標(biāo)系下點(diǎn)M的軌跡C;
(2)求直線l被C截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某校對(duì)數(shù)學(xué)、物理兩科進(jìn)行學(xué)業(yè)水平考前輔導(dǎo),輔導(dǎo)后進(jìn)行測試,按照成績(滿分均為100分)劃分為合格(成績大于或等于70分)和不合格(成績小于70分).現(xiàn)隨機(jī)抽取兩科各100名學(xué)生的成績統(tǒng)計(jì)如下:
成績(單位:分)[50,60)[60,70)[70,80)[80,90)[90,100]
數(shù)學(xué)81240328
物理71840296
(1)試分別估計(jì)該校學(xué)生數(shù)學(xué)、物理合格的概率;
(2)設(shè)數(shù)學(xué)合格一人可以贏得4小時(shí)機(jī)器人操作時(shí)間,不合格一人則減少1小時(shí)機(jī)器人操作時(shí)間;物理合格一人可以贏得5小時(shí)機(jī)器人操作時(shí)間,不合格一人則減少2小時(shí)機(jī)器人操作時(shí)間.在(1)的前提下,
(i)記X為數(shù)學(xué)一人和物理一人共同贏得的機(jī)器人操作時(shí)間(單位:小時(shí))總和,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(ii)隨機(jī)抽取4名學(xué)生,求這四名學(xué)生物理考前輔導(dǎo)后進(jìn)行測試所贏得的機(jī)器人操作時(shí)間不少于13小時(shí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:解答題

已知的圖象過點(diǎn),且.

(1)求的解析式;

(2)已知,,求函數(shù)上的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,△AOB為等腰直角三角形,OA=1,OC為斜邊AB的高,點(diǎn)P在射線OC上,則$\overrightarrow{AP}•\overrightarrow{OP}$的最小值為( 。
A.-1B.-$\frac{1}{8}$C.-$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax2+x-lnx,(a>0).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)f(x)極值點(diǎn)為x0,若存在x1,x2∈(0,+∞),且x1≠x2,使f(x1)=f(x2),求證:x1+x2>2x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知{an}是正數(shù)組成的數(shù)列,a1=1,其前n項(xiàng)的和為Sn,且2Sn=an2+an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an(3an-3)cosnπ(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標(biāo)系中,若點(diǎn)(-2,t)在直線x-2y+4=0的上方,則取值范圍是(1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案