解關(guān)于x的方程:4-x-6×(
1
2
x+8=0.
考點(diǎn):有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:令t=(
1
2
x,t>0,則原方程可化為:t2-6t+8=0,解方程可得答案.
解答: 解:令t=(
1
2
x,t>0,
則原方程可化為:t2-6t+8=0,
解得:t=2,或t=4,
故x=-1,或x=-2
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是解指數(shù)方程,其中利用換元法,將方程轉(zhuǎn)化為一個(gè)二次方程是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
cos2x
x
,則f(x)在x=
π
4
處切線的斜率為(  )
A、-
π
8
B、-
π
4
C、
4
π
D、
8
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線ρ=4cosθ與直線ρsin(θ+
4
)=2
2
相交的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=-x2+1,則它與x軸所圍圖形的面積為( 。
A、
5
B、
4
3
C、
3
2
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

g′(x)是函數(shù)g(x)=sin2(2x+
π
6
)的導(dǎo)函數(shù),f′(x)是定義城為R的函數(shù)f(x)的導(dǎo)函數(shù),且滿足f(4)=g′(-
π
24
),又已知函數(shù)y=f′(x)的圖象如圖所示,若兩正數(shù)a,b滿足f(2a+b)<1,則
b+2
a+2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)滿足,對(duì)一切實(shí)數(shù)x,y都有f(x)+f(y)=x(2y-1),求f(1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(ωx+
π
6
)(ω>0)相鄰兩個(gè)零點(diǎn)之間的距離為
π
3
,則ω的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c都是正實(shí)數(shù),且滿足log9(9a+b)=log3
ab
,則使4a+b≥c恒成立的c的取值范圍是( 。
A、[
4
3
,2)
B、(0,22)
C、[2,23)
D、(0,25]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若2sinα=1,且α∈(0,2π),則α=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案