19.等差數(shù)列的前n項和也構(gòu)成一個等差數(shù)列,即Sn,S2n-Sn,S3n-S2n,…為等差數(shù)列,公差為n2d.

分析 根據(jù)等差數(shù)列的性質(zhì),推出(S2n-Sn)-Sn)=n2d,(S3n-S2n)-(S2n-Sn)=n2d,故可求得公差.

解答 解:設(shè)等差數(shù)列an的首項為a1,公差為d,
則Sn=a1+a2+…+an,S2n-Sn=an+1+an+2+…+a2n=a1+nd+a2+nd+…+an+nd=Sn+n2d,
∴(S2n-Sn)-Sn)=n2d,
同理:S3n-S2n=a2n+1+a2n+2+…+a3n=an+1+an+2+…+a2n+n2d=S2n-Sn+n2d,
∴(S3n-S2n)-(S2n-Sn)=n2d,
故答案為:n2d.

點評 本題考查等差前n項和公式的推理,計算過程簡單,屬于掌握知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx,g(x)=alnx-$\frac{1}{2}$x2,h(x)=$\frac{1}{2}$x2
(1)求函數(shù)g(x)的單調(diào)區(qū)間;
(2)對于函數(shù)f(x)與h(x)定義域內(nèi)的任意實數(shù)x,若存在直線y=kx+b,使得f(x)≤kx+b和h(x)≥kx+b都成立,則稱直線y=kx+b為函數(shù)f(x)與h(x)的分界線,求證:直線y=x-$\frac{1}{2}$為函數(shù)f(x)與h(x)的分界線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某個體戶計劃經(jīng)銷A,B兩種商品,據(jù)調(diào)查統(tǒng)計,當(dāng)投資額為x(x≥0)萬元時,在經(jīng)銷A,B商品中所獲得的收益分別為f(x)萬元與g(x)萬元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b),(a>0,b>0)已知投資額為零時,收益為零.
(1)求a、b的值;
(2)如果該個體戶準(zhǔn)備投入5萬元經(jīng)銷這兩種商品,請你幫他制定一個資金投入方案,使他能獲得最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知數(shù)列{an}滿足an+1=$\sqrt{{a}_{n}^{2}-2{a}_{n}+2}$+1(n∈N*),則使不等式a2016>2016成立的所有正整數(shù)a1的集合為( 。
A.{a1|a1≥2016,a1∈N*}B.{a1|a1≥2015,a1∈N*}C.{a1|a1≥2014,a1∈N*}D.{a1|a1≥2013,a1∈N*}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x+x•|x-a|,x∈[1,5]
(Ⅰ)當(dāng)a=4時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a≥3時,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.當(dāng)x∈[0,2]時,函數(shù)f(x)=ax2+4(a-1)x-3在x=2時取得最大值,則實數(shù)a的取值范圍是[$\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1(2>b>0)的上,下頂點分別為A,B,過點B的直線與橢圓交于另一點D,與直線y=-2交于點M.
(Ⅰ)當(dāng)b=1且點D為橢圓的右頂點時,求三角形AMD的面積S的值;
(Ⅱ)若直線AM,AD的斜率之積為-$\frac{3}{4}$,求橢圓C的方程及$\overrightarrow{MA}$$•\overrightarrow{MD}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,“$\overrightarrow{a}$∥$\overrightarrow$”是“$\overrightarrow{a}$∥($\overrightarrow{a}$+$\overrightarrow$)”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知點A(2,-4),B(4,6),求線段AB中點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案