【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在直線坐標(biāo)系xoy中,圓C的方程為(x+6)2+y2=25.
(1)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求C的極坐標(biāo)方程;
(2)直線l的參數(shù)方程是 t為參數(shù)),lC交于AB兩點(diǎn),∣AB∣= ,求l的斜率。

【答案】
(1)

解:整理圓的方程得

可知圓 的極坐標(biāo)方程為


(2)

解:記直線的斜率為 ,則直線的方程為 ,

由垂徑定理及點(diǎn)到直線距離公式知:

,整理得 ,則


【解析】(1)把圓C的標(biāo)準(zhǔn)方程化為一般方程,由此利用ρ2=x2+y2 , x=ρcosα,y=ρsinα,能求出圓C的極坐標(biāo)方程.(2)由直線l的參數(shù)方程求出直線l的一般方程,再求出圓心到直線距離,由此能求出直線l的斜率.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解圓的標(biāo)準(zhǔn)方程(圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的交點(diǎn)為F,準(zhǔn)線為l,過點(diǎn)F的直線與拋物線交于M,N兩點(diǎn),若MR⊥l,垂足為R,且∠NRM=∠NMR,則直線MN的斜率為(
A.±8
B.±4
C.±2
D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 1(a> )的右焦點(diǎn)為F,右頂點(diǎn)為A,已知 ,其中O為原點(diǎn),e為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)A的直線l與橢圓交于B(B不在x軸上),垂直于l的直線與l交于點(diǎn)M,與y軸交于點(diǎn)H,若BF⊥HF,且∠MOA=∠MAO,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面與平面交于直線是平面內(nèi)不同的兩點(diǎn),是平面內(nèi)不同的兩點(diǎn),且不在直線上,分別是線段的中點(diǎn),下列命題中正確的個(gè)數(shù)為( )

①若相交,且直線平行于時(shí),則直線也平行;

②若是異面直線時(shí),則直線可能與平行;

③若是異面直線時(shí),則不存在異于的直線同時(shí)與直線都相交;

兩點(diǎn)可能重合,但此時(shí)直線不可能相交

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,點(diǎn)M(m, 0)在x軸的正半軸上,過M點(diǎn)的直線與拋物線 C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).

(1) 若m=l,且直線的斜率為1,求以AB為直徑的圓的方程;

(2) 是否存在定點(diǎn)M,使得不論直線繞點(diǎn)M如何轉(zhuǎn)動(dòng), 恒為定值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點(diǎn)為A,右焦點(diǎn)為F,過點(diǎn)F的直線交橢圓于B,C兩點(diǎn).

(1)求該橢圓的離心率;

(2)設(shè)直線ABAC分別與直線x=4交于點(diǎn)M,N,問:x軸上是否存在定點(diǎn)P使得MPNP?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1x2y2-4x-2y-5=0與圓C2x2y2-6xy-9=0.

(1)求證:兩圓相交;(2)求兩圓公共弦所在的直線方程;

(3)在平面上找一點(diǎn)P,過P點(diǎn)引兩圓的切線并使它們的長(zhǎng)都等于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列中,a1=2,a3+2a2a4的等差中項(xiàng).

(1)求數(shù)列的通項(xiàng)公式;

(2)log2,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC△VAB為等邊三角形,AC⊥BCAC=BC=,OM分別為AB,VA的中點(diǎn).

1)求證:VB∥平面MOC

2)求證:平面MOC⊥平面VAB

3)求三棱錐V﹣ABC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案