14.已知函數(shù)f(cosx)=-f′($\frac{1}{2}$)cosx+$\sqrt{3}$sin2x,則f($\frac{1}{2}$)的值為$\sqrt{5}$.

分析 先利用換元法求出函數(shù)的解析式,再求導,代值計算即可.

解答 解:令t=cosx,t∈[-1,1],
f(t)=-f′($\frac{1}{2}$)t+$\sqrt{3}$(1-t2),
∴f′(t)=-f′($\frac{1}{2}$)-2$\sqrt{3}$t,
令t=$\frac{1}{2}$,
則f′($\frac{1}{2}$)=-$\frac{\sqrt{3}}{2}$,
∴f(t)=$\frac{\sqrt{3}}{2}$t+$\sqrt{3}$(1-t2),
∴f($\frac{1}{2}$)=$\sqrt{5}$,
故答案為:$\sqrt{5}$

點評 本題考查了函數(shù)解析式的求法和導數(shù)的運算法則,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.已知等比數(shù)列{an},a1=1,a4=-8,則S7=$\frac{128}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an},滿足a1=1,a2=3,an+2=3an+1-2an,bn=an+1-an,
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式;.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.等腰直角三角形ABC的直角頂點C和頂點B都在直線2x+y-6=0上,頂點A的坐標是(1,-1),
(1)求邊AC所在的直線方程及邊AC的長.
(2)求B點的坐標及邊AB所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若cos(65°+α)=$\frac{2}{3}$,其中α為第三象限角,則cos(115°-α)+sin(α-115°)=$\frac{{\sqrt{5}-2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是( 。
A.y=3-xB.y=x2+1C.y=$\frac{1}{x}$D.y=-x2+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.計算(字母為正數(shù))
(1)(4a2b${\;}^{\frac{2}{3}}$)(-2a${\;}^{\frac{1}{3}}$b${\;}^{-\frac{2}{3}}$)÷(-b${\;}^{-\frac{1}{2}}$);
(2)$\sqrt{6\frac{1}{4}}$-$\root{3}{3\frac{3}{8}}$-($\sqrt{2}$-1)0+(-1)2016+2-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=ax-lnx在(${\frac{1}{2}$,+∞)內(nèi)單調(diào)遞增,則a的取值范圍為( 。
A.(2,+∞)B.[2,+∞)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.銷售甲、乙兩種商品所得利潤分別是P(萬元)和Q(萬元),它們與投入資金t(萬元)的關(guān)系有經(jīng)驗公式P=3$\sqrt{t}$,Q=t.今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲種商品投資x(萬元).求:
(1)經(jīng)營甲、乙兩種商品的總利潤y(萬元)關(guān)于x的函數(shù)表達式;
(2)怎樣將資金分配給甲、乙兩種商品,能使得總利潤y達到最大值,最大值是多少?

查看答案和解析>>

同步練習冊答案