19.雙曲線方程為$\frac{x^2}{6}-\frac{y^2}{6}=1$,那么它的離心率為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{3}{2}$

分析 根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程可得a=b=$\sqrt{6}$,進(jìn)而計(jì)算可得c的值,由雙曲線的離心率公式計(jì)算可得答案.

解答 解:根據(jù)題意,雙曲線的標(biāo)準(zhǔn)方程為$\frac{x^2}{6}-\frac{y^2}{6}=1$,
則a=b=$\sqrt{6}$,
故c2=6+6=12,即c=2$\sqrt{3}$,
那么它的離心率e=$\frac{c}{a}$=$\sqrt{2}$,
故選:C.

點(diǎn)評 本題考查雙曲線的幾何性質(zhì),注意由標(biāo)準(zhǔn)方程判斷出a、b的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.用一張4cm×8cm的矩形硬紙卷成圓柱的側(cè)面,則圓柱軸截面的面積為$\frac{32}{π}$cm2(接頭忽略不計(jì)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若2<a<3,化簡$\root{3}{{{{(2-a)}^3}}}+\root{4}{{{{(3-a)}^4}}}$的結(jié)果是( 。
A.5-2aB.2a-5C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若A(3,$\frac{2π}{3}$),B(4,$\frac{π}{6}$),則|AB|=____(注A、B兩點(diǎn)坐標(biāo)為極坐標(biāo))( 。
A.4B.5C.4$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列有關(guān)命題的說法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.命題“若x=y,則sinx=siny”的逆否命題為假命題
C.命題“存在x∈R,使得x2+x+1<0”的否定是:“對任意x∈R,均有x2+x+1<0”
D.△ABC中,A>B是sinA>sinB的充分必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.有一個幾何體的正視圖、側(cè)視圖、俯視圖如圖所示,則該幾何體的表面積為( 。
A.48πB.36πC.24πD.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-kx+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0恒成立,試確定實(shí)數(shù)k的取值范圍;
(3)證明:$\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{{n({n-1})}}{4}({n∈{N_+},n>1})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}中,a1=4,an=an-1+2n-1+3(n≥2,n∈N*).
(1)證明數(shù)列{an-2n}是等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{a_n}{2^n}$,求bn的前n和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=a(x+a)(x-a+3),g(x)=2x+2-1,若對任意x∈R,f(x)>0和g(x)>0至少有一個成立,則實(shí)數(shù)a的取值范圍是( 。
A.(1,2)B.(2,3)C.(-2,-1)∪(1,+∞)D.(0,2)

查看答案和解析>>

同步練習(xí)冊答案