設(shè)全集I=R,已知集合M={x|(x+3)2≤0},N={x|x2+x-6=0}.
(1)求(∁IM)∩N;
(2)記集合A=(∁IM)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若B∪A=A,求實數(shù)a的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
給出下面幾個命題:
①“若x>2,則x>3”的否命題;
②“∀a∈(0,+∞),函數(shù)y=ax在定義域內(nèi)單調(diào)遞增”的否定;
③“π是函數(shù)y=sin x的一個周期”或“2π是函數(shù)y=sin 2x的一個周期”;
④“x2+y2=0”是“xy=0”的必要條件.
其中真命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知f(x)=x2,g(x)=-m,若對∀x1∈[-1,3],∃x2∈[0,2], f(x1)≥g(x2),則實數(shù)m的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若f(x)對于任意實數(shù)x恒有2f(x)-f(-x)=3x+1,則f(x)=( )
A.x-1 B.x+1
C.2x+1 D.3x+3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知a,b為兩個不相等的實數(shù),集合M={a2-4a,-1},N={b2-4b+1,-2},f:x→x表示把M中的元素x映射到集合N中仍為x,則a+b等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)的定義域為[0,1],且同時滿足以下三個條件:①f(1)=1;②對任意的x∈[0,1],都有f(x)≥0;③當(dāng)x≥0,y≥0,x+y≤1時總有f(x+y)≥f(x)+f(y).
(1)試求f(0)的值;
(2)求f(x)的最大值;
(3)證明:當(dāng)x∈時,恒有2x≥f(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在淘寶網(wǎng)上,某店鋪專賣當(dāng)?shù)啬撤N特產(chǎn),由以往的經(jīng)驗表明,不考慮其他因素,該特產(chǎn)每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克,1<x≤5)滿足:當(dāng)1<x≤3時,y=a(x-3)2+,(a,b為常數(shù));當(dāng)3<x≤5時,y=-70x+490,已知當(dāng)銷售價格為2元/千克時,每日可售出該特產(chǎn)700千克;當(dāng)銷售價格為3元/千克時,每日可售出該特產(chǎn)150千克.
(1)求a,b的值,并確定y關(guān)于x的函數(shù)解析式;
(2)若該特產(chǎn)的銷售成本為1元/千克,試確定銷售價格x的值,使店鋪每日銷售該特產(chǎn)所獲利潤f(x)最大(x精確到0.01元/千克).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com