【題目】已知{an}為等比數(shù)列,a1=1,a4=27; Sn為等差數(shù)列{bn} 的前n 項(xiàng)和,b1=3,S5=35.

(1)求{an}和{bn} 的通項(xiàng)公式;

(2)設(shè)數(shù)列{cn} 滿足cn=anbn(n∈N*),求數(shù)列{cn} 的前n 項(xiàng)和Tn

【答案】(1) (2)

【解析】試題分析:(1)設(shè)等比數(shù)列的公比為,由,可得,解得,設(shè)等差數(shù)列的公差為,由,可得,解得,從而可得結(jié)果;(2)由(1)可得,利用“錯(cuò)位相減法”與等比數(shù)列的求和公式即可得出.

試題解析:(1)設(shè)等比數(shù)列{an}的公比為q,∵a1=1,a4=27;∴1×q3=27,解得q=3.

設(shè)等差數(shù)列{bn} 的公差為d,∵b1=3,S5=35.∴5×3+=35,解得d=2.

∴bn=3+2(n﹣1)=2n+1.

(2)cn=anbn=(2n+1)3n﹣1

∴數(shù)列{cn} 的前n 項(xiàng)和Tn=3+5×3+7×32+…+(2n+1)3n﹣1

3Tn=3×3+5×32+…+(2n﹣1)3n﹣1+(2n+1)3n

﹣2Tn=3+2×(3+32+…+3n﹣1)﹣(2n+1)3n=3+﹣(2n+1)3n

∴Tn=n3n

方法點(diǎn)睛】本題主要考查等比數(shù)列和等差數(shù)列的通項(xiàng)以及錯(cuò)位相減法求數(shù)列的的前 項(xiàng)和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列, 是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用“錯(cuò)位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出“與“的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是(
A.y=
B.y=x2
C.y=x3
D.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如表的列聯(lián)表.

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

乙班

30

合計(jì)

100

已知在全部100人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為
(1)請(qǐng)完成如表的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),有多大的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)系“?
(3)按分層抽樣的方法,從優(yōu)秀學(xué)生中抽出6名學(xué)生組成一個(gè)樣本,再從樣本中抽出2名學(xué)生,記甲班被抽到的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
參考公式和數(shù)據(jù):K2= ,其中n=a+b+c+d
下面的臨界值表供參考:

p(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣4x,那么當(dāng)x<0時(shí),f(x)= , 不等式f(x+2)<5的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 是自然對(duì)數(shù)的底數(shù)).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列三個(gè)命題
①若“p或q”為假命題,則p,q均為真命題;
②命題“若x≥2且y≥3,則x+y≥5”的逆否命題為假命題;
③在△ABC中,“A>45°”是“sinA> ”的充要條件,
其中正確的命題個(gè)數(shù)是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2+bx+c(b,c∈R,b<0).
(1)若f(x)的定義域?yàn)閇0,1]時(shí),值域也是[0,1],求b,c的值;
(2)若b=﹣2時(shí),若函數(shù)g(x)= 對(duì)任意x∈[3,5],g(x)>c恒成立,試求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線方程為.

(1)若函數(shù)時(shí)有極值,求的解析式;

(2)函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費(fèi)按行駛里程加用車時(shí)間,標(biāo)準(zhǔn)是“1元/公里+0.1元/分鐘”,李先生家離上班地點(diǎn)10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費(fèi)的時(shí)間是一個(gè)隨機(jī)變量,根據(jù)一段時(shí)間統(tǒng)計(jì)40次路上開車花費(fèi)時(shí)間在各時(shí)間段內(nèi)的情況如下:

時(shí)間(分鐘)

次數(shù)

8

14

8

8

2

以各時(shí)間段發(fā)生的頻率視為概率,假設(shè)每次路上開車花費(fèi)的時(shí)間視為用車時(shí)間,范圍為分鐘.

(Ⅰ)若李先生上.下班時(shí)租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)是4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽車2次,一個(gè)月(以20天計(jì)算)平均用車費(fèi)用大約是多少(同一時(shí)段,用該區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

同步練習(xí)冊(cè)答案