1.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{log_2}(3-x)\\ f(x-1)-f(x-2)\end{array}\right.\begin{array}{l}x≤0\\ x>0\end{array}$,則f(11)=2.

分析 利用分段函數(shù)的解析式,逐步化簡求解即可.

解答 解:定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{log_2}(3-x)\\ f(x-1)-f(x-2)\end{array}\right.\begin{array}{l}x≤0\\ x>0\end{array}$,
則f(11)=f(10)-f(9)=f(9)-f(8)-f(9)=-f(8)=-f(7)+f(6)=-f(6)+f(5)+f(6)=f(5)=…=f(-1)=log2(3+1)=2.
故答案為:2.

點(diǎn)評 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a=20.01,b=ln$\frac{7}{3}$,c=log3$\frac{11}{12}$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>c>aC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)全集U=R,集合A={x|-1<x<4},B={y|y=x+1,x∈A},(∁UA)∩(∁UB)=(-∞,-1]∪[5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=x2-4x+3,若f(x)≥mx對任意的實(shí)數(shù)x≥2都成立,則實(shí)數(shù)m的取值范圍是( 。
A.[-2$\sqrt{3}$-4,-2$\sqrt{3}$+4]B.(-∞,-2$\sqrt{3}$-4]∪[-2$\sqrt{3}$+4,+∞)
C.[-2$\sqrt{3}$+4,+∞)D.(-∞,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=$\frac{{3{x^2}}}{{\sqrt{1-x}}}$+ln(x+1)的定義域?yàn)椋?1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.(2x-$\frac{1}{x}$)4 的展開式中的常數(shù)項(xiàng)為24,系數(shù)和為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)y=xcosx-sinx的圖象上的點(diǎn)(x0,y0)處的切線的斜率為k,若k=g(x0),則函數(shù)k=g(x0)的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知斜率為1的直線l與拋物線y2=2px(p>0)交于位于x軸上方的不同兩點(diǎn)A,B,記直線OA,OB的斜率分別為K1,K2,則K1+K2的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知冪函數(shù)f(x)=(k2+k-1)x${\;}^{{k}^{2}-3k}$(k∈Z)的圖象關(guān)于y軸對稱,且在(0,+∞)上是減函數(shù),則k的值為1.

查看答案和解析>>

同步練習(xí)冊答案