【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對近六年的年宣傳費和年銷售量的數(shù)據(jù)作了初步統(tǒng)計,得到如下數(shù)據(jù):
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年宣傳費(萬元) | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量(噸) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(萬元)與年銷售量(噸)之間近似滿足關(guān)系式,即.對上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;
(2)規(guī)定當(dāng)產(chǎn)品的年銷售量(噸)與年宣傳費(萬元)的比值在區(qū)間內(nèi)時認(rèn)為該年效益良好.該公司某年投入的宣傳費用(單位:萬元)分別為:、、、、、,試根據(jù)回歸方程估計年銷售量,從這年中任選年,記其中選到效益良好年的數(shù)量為,試求隨機(jī)變量的分布列和期望.(其中為自然對數(shù)的底數(shù),)
附:對于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計分別為,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cosx(sinx+cosx)﹣ .
(1)若0<α< , 且sinα= , 求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2+lnx.
(Ⅰ)當(dāng)a=﹣1時,求函數(shù)y=f(x)的圖象在點(1,f(1))處的切線方程;
(Ⅱ)已知a<0,若函數(shù)y=f(x)的圖象總在直線y=-的下方,求a的取值范圍;
(Ⅲ)記f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).若a=1,試問:在區(qū)間[1,10]上是否存在k(k<100)個正數(shù)x1 , x2 , x3…xk , 使得f′(x1)+f′(x2)+f′(x3)+…+f′(xk)≥2012成立?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù),函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時,不等式恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c.
(1)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(2)若a,b,c成等比數(shù)列,求cosB的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線C由上半橢圓C1: =1(a>b>0,y≥0)和部分拋物線C2:y=﹣x2+1(y≤0)連接而成,C1與C2的公共點為A,B,其中C1的離心率為 .
(1)求a,b的值;
(2)過點B的直線l與C1 , C2分別交于點P,Q(均異于點A,B),若AP⊥AQ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,且f(x)=.
(1)求函數(shù)f(x)的解析式;最小正周期及單調(diào)遞增區(qū)間.
(2)當(dāng)時,f(x)的最小值是-4,求此時函數(shù)f(x)的最大值,并求出相應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲、乙兩個項目,對甲項目每投資10萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為;已知乙項目的利潤與產(chǎn)品價格的調(diào)整有關(guān),在每次調(diào)整中,價格下降的概率都是p(0<p<1),設(shè)乙項目產(chǎn)品價格在一年內(nèi)進(jìn)行兩次獨立的調(diào)整.記乙項目產(chǎn)品價格在一年內(nèi)的下降次數(shù)為X,對乙項目每投資10萬元,X取0、1、2時,一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機(jī)變量X1、X2分別表示對甲、乙兩項目各投資10萬元一年后的利潤.
(1)求X1,X2的概率分布和均值E(X1),E(X2);
(2)當(dāng)E(X1)<E(X2)時,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形是一個歷史文物展覽廳的俯視圖,點在上,在梯形區(qū)域內(nèi)部展示文物,是玻璃幕墻,游客只能在區(qū)域內(nèi)參觀.在上點處安裝一可旋轉(zhuǎn)的監(jiān)控攝像頭.為監(jiān)控角,其中、在線段(含端點)上,且點在點的右下方.經(jīng)測量得知:米,米,米,.記(弧度),監(jiān)控攝像頭的可視區(qū)域的面積為平方米.
(1)求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;(參考數(shù)據(jù):)
(2)求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com