已知函數(shù)簇 fn(x)=x2-2(n+1)x+n2+5n-7(n∈N*).
(1)設(shè)曲線(xiàn)列Cn:y=fn(x)的頂點(diǎn)的縱坐標(biāo)構(gòu)成數(shù)列{an},求證:數(shù)列{an}為等差數(shù)列;
(2)設(shè)曲線(xiàn)列Cn:y=fn(x)的頂點(diǎn)到x軸的距離構(gòu)成數(shù)列{bn},Sn為數(shù)列{bn}的前n項(xiàng)和,求S20
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)配方,確定函數(shù)y=f(x)的圖象的頂點(diǎn)的縱坐標(biāo),從而可求數(shù)列{an}的通項(xiàng),再證明為等差數(shù)列;
(2)確定數(shù)列{bn}的通項(xiàng),進(jìn)而可分段求出{bn}的前n項(xiàng)和Sn
解答: (1)證明:∵f(x)=x2-2(n+1)x+n2+5n-7=[x-(n+1)]2+3n-8,
∴an=3n-8,
∴an+1-an=3(n+1)-8-(3n-8)=3,
∴數(shù)列{an}為等差數(shù)列.
(2)解:由題意知,bn=|an|=|3n-8|,
∴當(dāng)1≤n≤2時(shí),bn=8-3n,
sn=b1+b2+b3+…+bn=
n(b1+bn)
2
=
n[5+(8-3n)]
2
=
13n-3n2
2
;
當(dāng)n≥3時(shí),bn=3n-8,Sn=b1+b2+b3+…+bn=5+2+1+…+(3n-8)=7+
(n-2)[1+(3n-8)]
2
=
3n2-13n+28
2

∴sn=
13n-3n2
2
1≤n≤2
3n2-13n+28
2
n≥3

∴s20=
3×202-13×20+28
2
=484.
點(diǎn)評(píng):本題考查數(shù)列與函數(shù)的關(guān)系,考查等差數(shù)列的證明,考查數(shù)列的求和,考查分類(lèi)討論的數(shù)學(xué)思想,正確求數(shù)列的通項(xiàng)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等式|x-2|>1的解集與關(guān)于x的不等式x2-ax+b>0的解集相等.
(I)求實(shí)數(shù)a,b的值;
(Ⅱ)求函數(shù)f(x)=a
x-3
+b
4-x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=Asin(ωx+φ)(A>0,ω>0)的一段圖象如下,則f(x)的解析式為( 。
A、f(x)=2sin(2x+
3
)
B、f(x)=2sin(2x-
π
3
)
C、f(x)=2sin(2x+
π
3
)
D、f(x)=2sin(2x-
π
6
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,拋物線(xiàn)上一點(diǎn)M(m,-3)到拋物線(xiàn)焦點(diǎn)的距離為5,
(1)求m的值;
(2)拋物線(xiàn)的方程及準(zhǔn)線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,sinA=
4
5
,cosB=
2
2
3
,則cosC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=xlnx,則( 。
A、x=1為f(x)的極大值點(diǎn)
B、x=1為f(x)的極小值點(diǎn)
C、x=
1
e
為f(x)的極大值點(diǎn)
D、x=
1
e
為f(x)的極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex+e-x,其中e是自然對(duì)數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù).
(2)若關(guān)于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.
(3)已知正數(shù)a滿(mǎn)足:存在x0∈[1,+∞),使得f(x0)<a(-x02+3x0)成立.試比較ea-1與ae-1的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(2,l),B(3,2),若線(xiàn)段AB(不含端點(diǎn)A、B)與橢圓(m-1)x2+my2=1總有交點(diǎn),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中,正確的個(gè)數(shù)是( 。 
①數(shù)據(jù)5,4,3,4,5的眾數(shù)是5
②數(shù)據(jù)5,4,3,4,5的中位數(shù)是3
③一組數(shù)據(jù)的方差是4,則這組數(shù)據(jù)的標(biāo)準(zhǔn)差是±2
④頻率分布直方圖中,各小長(zhǎng)方形的面積等于相應(yīng)各組的頻數(shù).
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案