【題目】已知函數(shù)有兩個(gè)零點(diǎn),,且.

1)求的取值范圍;

2)證明:.

【答案】12)見解析

【解析】

1)首先求出函數(shù)的導(dǎo)函數(shù),令,即可求出函數(shù)的最小值,要使函數(shù)有兩個(gè)零點(diǎn)則,即可求出參數(shù)的取值范圍,再驗(yàn)證即可;

2)由,令,則,交點(diǎn)橫坐標(biāo).求出的導(dǎo)數(shù),即可求出的單調(diào)性與最值,得到,再構(gòu)造函數(shù),證明其單調(diào)性從而得證;

1,由,

當(dāng)時(shí),,即上單調(diào)遞增;

當(dāng)時(shí),,即上單調(diào)遞減;

處取得最小值,解得.

,,上有1個(gè)零點(diǎn);

,,令,則,,,

,上有1個(gè)零點(diǎn),

綜上,的取值范圍是.

2)由,令,則,交點(diǎn)橫坐標(biāo).

,當(dāng)時(shí),,上是減函數(shù),在上是增函數(shù),

處取得最小值,,

設(shè),,是減函數(shù),

,

,

、上遞減,,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線的焦點(diǎn), 到拋物線的準(zhǔn)線的距離為.

(I)求橢圓的方程和拋物線的方程;

(II)設(shè)上兩點(diǎn), 關(guān)于軸對稱,直線與橢圓相交于點(diǎn)異于點(diǎn)),直線軸相交于點(diǎn).若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形中,,E,F分別為,的中點(diǎn).沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段的中點(diǎn),連接.

1)求證:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠擬修建一個(gè)無蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為米,高為米,體積為立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100/平方米,底面的建造成本為160/平方米,該蓄水池的總建造成本為元(為圓周率).該蓄水池的體積最大時(shí)______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形中,EF分別為的三等分點(diǎn),,,,若沿著,折疊使得點(diǎn)A和點(diǎn)B重合,如圖2所示,連結(jié),.

1)求證:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,湖中有一個(gè)半徑為千米的圓形小島,岸邊點(diǎn)與小島圓心相距千米,為方便游人到小島觀光,從點(diǎn)向小島建三段棧道,,湖面上的點(diǎn)在線段上,且均與圓相切,切點(diǎn)分別為,,其中棧道,和小島在同一個(gè)平面上.沿圓的優(yōu)。▓A上實(shí)線部分)上再修建棧道..

表示棧道的總長度,并確定的取值范圍;

求當(dāng)為何值時(shí),棧道總長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,E,F分別為AB的三等分點(diǎn),,,若沿著FG,ED折疊使得點(diǎn)AB重合,如圖2所示,連結(jié)GC,BD

1)求證:平面平面BCDE;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省從2021年開始將全面推行新高考制度,新高考“”中的“2”要求考生從政治、化學(xué)、生物、地理四門中選兩科,按照等級賦分計(jì)入高考成績,等級賦分規(guī)則如下:從2021年夏季高考開始,高考政治、化學(xué)、生物、地理四門等級考試科目的考生原始成績從高到低劃分為五個(gè)等級,確定各等級人數(shù)所占比例分別為,,,,等級考試科目成績計(jì)入考生總成績時(shí),將等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法分別轉(zhuǎn)換到、、五個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級分,等級轉(zhuǎn)換分滿分為100分.具體轉(zhuǎn)換分?jǐn)?shù)區(qū)間如下表:

等級

比例

賦分區(qū)間

而等比例轉(zhuǎn)換法是通過公式計(jì)算:

其中,分別表示原始分區(qū)間的最低分和最高分,、分別表示等級分區(qū)間的最低分和最高分,表示原始分,表示轉(zhuǎn)換分,當(dāng)原始分為時(shí),等級分分別為

假設(shè)小南的化學(xué)考試成績信息如下表:

考生科目

考試成績

成績等級

原始分區(qū)間

等級分區(qū)間

化學(xué)

75分

等級

設(shè)小南轉(zhuǎn)換后的等級成績?yōu)?/span>,根據(jù)公式得:,

所以(四舍五入取整),小南最終化學(xué)成績?yōu)?7分.

已知某年級學(xué)生有100人選了化學(xué),以半期考試成績?yōu)樵汲煽冝D(zhuǎn)換本年級的化學(xué)等級成績,其中化學(xué)成績獲得等級的學(xué)生原始成績統(tǒng)計(jì)如下表:

成績

95

93

91

90

88

87

85

人數(shù)

1

2

3

2

3

2

2

(1)從化學(xué)成績獲得等級的學(xué)生中任取2名,求恰好有1名同學(xué)的等級成績不小于96分的概率;

(2)從化學(xué)成績獲得等級的學(xué)生中任取5名,設(shè)5名學(xué)生中等級成績不小于96分人數(shù)為,求的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案