若函數(shù)f(x)=
2x-a
的定義域[1,+∞),則a的取值范圍是
 
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:把函數(shù)f(x)=
2x-a
的定義域?yàn)閇1,+∞)轉(zhuǎn)化為2x-a≥0的解集為[1,+∞),求解不等式后解對(duì)數(shù)方程得答案.
解答: 解:∵函數(shù)f(x)=
2x-a
的定義域?yàn)閇1,+∞),
∴2x-a≥0的解集為[1,+∞),
由2x-a≥0,得x≥log2a,
則log2a=1,即a=2.
故答案為:2.
點(diǎn)評(píng):本題考查了函數(shù)的定義域及其求法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-(
1
2
a-1)x2+3(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)函數(shù)f(x)在[0,a]上的最大值為g(a),
①求g(a)的值;
②若過點(diǎn)(m,
25
3
)可作出y=g(x)的三條切線,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈[0,2]時(shí),|a-2x|>x-1恒成立的充要條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P是橢圓
x2
4
+
y2
3
=1上任意一點(diǎn),F(xiàn)1、F2是焦點(diǎn),則∠F1PF2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角∠A、∠B、∠C的對(duì)邊分別為a,b,c,且2acosC+c=2b.
(1)求tanA的大;
(2)若a2=bc,求∠C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市地鐵即將于2013年12月開始運(yùn)營,為此召開了一個(gè)價(jià)格聽證會(huì),擬定價(jià)格后又進(jìn)行了一次調(diào)查,隨機(jī)抽查了50人,他們?cè)率杖肱c態(tài)度如下:
月收入(單位百元)[15,25][25,35][35,45][45.55][55.65][65.75]
贊成的那個(gè)定價(jià)者人數(shù)123534
認(rèn)為價(jià)格偏高人數(shù)4812521
(1)若以區(qū)間的中點(diǎn)為該區(qū)間捏的人均月收入,求參與調(diào)查的人員中“贊成定價(jià)者”與“認(rèn)為價(jià)格偏高者”的月平均收入的差距是多少(結(jié)果保留2位小數(shù));
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表并分析是否有99%把握認(rèn)為“月收入以5500為分界點(diǎn)對(duì)地鐵定價(jià)的態(tài)度有差異”.
月收入不低于55百元的人數(shù)月收入低于55百元的人數(shù)合計(jì)
認(rèn)為價(jià)格偏高者a=c=
贊成定價(jià)者b=d=
合計(jì)
參考數(shù)據(jù):K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,
P(x2≥k)0.050,01
k3.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2000年底,我國人口為13億,計(jì)算:
(1)如果我國人口每年比上年平均遞增0.2%,那么到2050年底,我國人口將達(dá)到多少?(結(jié)果保留4個(gè)有效數(shù)字)
(2)要使2050年底我國人口不超過15億,那么 每年比上年平均遞增率最高是多少(精確到0.01%)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|
1
2
<2x<4},B={x|x2≤1},則A∪B=( 。
A、{x|x<2}
B、{x|-
1
2
<x≤1}
C、{x|-1≤x<2}
D、{x|1≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,已知正(主)視圖是底邊長為1的平行四邊形,側(cè)(左)視圖是一個(gè)長為
3
,寬為1的矩形,俯視圖為兩個(gè)邊長為1的正方形拼成的矩形,則該幾何體的體積V是( 。
A、1
B、
3
2
C、
3
D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案