已知焦點為F,準(zhǔn)線為l的拋物線Γ:x2=2py(p>0)經(jīng)過點(-2
3
,3),其中A,B是拋物線上兩個動點,O為坐標(biāo)原點.
(1)求拋物線Γ的方程.
(2)若OA⊥OB,求線段AB的中點P的軌跡方程.
(3)若∠AFB=90°,線段AB的中點M,點M在直線l上的投影為N,求
|MN|
|AB|
的最大值.
考點:直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)利用拋物線Γ:x2=2py(p>0)經(jīng)過點(-2
3
,3),求出p,即可求拋物線Γ的方程.
(2)若OA⊥OB,則x1x2+y1y2=0,利用2x=x2+x1,2y=
x12
4
+
x22
4
,即可求線段AB的中點P的軌跡方程.
(3)設(shè)|AF|=a、|BF|=b,由拋物線定義結(jié)合梯形的中位線定理,得2|MN|=a+b.再由勾股定理得|AB|2=a2+b2,結(jié)合基本不等式求得|AB|的范圍,從而可得
|MN|
|AB|
的最大值.
解答: 解:(1)∵拋物線Γ:x2=2py(p>0)經(jīng)過點(-2
3
,3),
∴12=6p,∴p=2,
∴拋物線Γ的方程為x2=4y.
(2)設(shè)P(x,y),A(x1,
x12
4
),B(x2,
x22
4
),則
2x=x2+x1,2y=
x12
4
+
x22
4

∴x2x1=2x2-4y,
∵OA⊥OB,
∴x1x2+y1y2=0,
∴x1x2+
x12
4
x22
4
=0,
∴x2x1=-16,
∴2x2-4y=-16,
即y=
1
2
x2+4,
∴線段AB的中點P的軌跡方程是y=
1
2
x2+4;
(3)設(shè)|AF|=a,|BF|=b,A、B在準(zhǔn)線上的射影點分別為Q、P,連接AQ、BP  
由拋物線定義,得AF|=|AQ|且|BF|=|BP|
在梯形ABPQ中根據(jù)中位線定理,得2|MN|=|AQ|+|BP|=a+b.
由勾股定理得|AB|2=a2+b2,配方得|AB|2=(a+b)2-2ab,
又∵ab≤(
a+b
2
) 2,
∴(a+b)2-2ab≥(a+b)2-2×(
a+b
2
) 2=
1
2
(a+b)2
得到|AB|≥
2
2
(a+b).
|MN|
|AB|
1
2
(a+b)
2
2
(a+b)
=
2
2
,即
|MN|
|AB|
的最大值為
2
2
點評:本題著重考查拋物線的方程、考查了拋物線的定義與簡單幾何性質(zhì)、梯形的中位線定理和基本不等式求最值等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2=1,設(shè)E(2,0),過點E斜率為k的直線與圓C交x軸上方A、B兩點,設(shè)f(k)=
1
2
1-3k2
S△ABO,求函數(shù)f(k)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}為等比數(shù)列,且滿足a1+a4=
9
16
,q=
1
2
(其中n∈N*).
(Ⅰ)求{an}的通項公式;
(Ⅱ)已知bn=2n-5,記Tn=a1b1+a2b2+…+anbn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,an=n3-λn,若數(shù)列{an}為遞增數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U=R,A={x|x<-4,或x>1},B={x丨-2<x<3}.求∁U(A∪B)和∁U(A∩B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(x+1)(x-2)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定平面上四點O,A,B,C滿足OA=4,OB=3,OC=2,
OB
OC
=3,則△ABC面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△OAB是邊長為2的正三角形,記△OAB位于直線x=t(0<t≤2)左側(cè)的圖形的面積為f(t),則
(Ⅰ)函數(shù)f(t)的解析式為
 

(Ⅱ)函數(shù)y=f(t)的圖象與直線t=2、t軸圍成的圖形面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合M={x|x=1+a2,a∈N*},P={y|y=x2-4x+5,x∈N*},下列關(guān)系中正確的是( 。
A、M?PB、P?M
C、M=PD、M?P且P?M

查看答案和解析>>

同步練習(xí)冊答案