15.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,$\frac{sinA}{a}$=$\frac{\sqrt{3}cosB}$.
(Ⅰ)求角B;
(Ⅱ)求sinAcosC的取值范圍.

分析 (Ⅰ)由正弦定理及已知可解得tanB=$\sqrt{3}$,結(jié)合范圍B∈(0,π),即可求得B的值.
(Ⅱ)利用三角形內(nèi)角和定理及兩角和的余弦函數(shù)公式化簡(jiǎn)可得sinAcosC=-$\frac{1}{2}$sin(2A+$\frac{π}{3}$)+$\frac{\sqrt{3}}{4}$,結(jié)合范圍0$<A<\frac{2π}{3}$,利用正弦函數(shù)的圖象和性質(zhì)即可得解取值范圍.

解答 (本題滿(mǎn)分為10分)
解:(Ⅰ)∵由正弦定理可得$\frac{a}{sinA}=\frac{sinB}$,$\frac{sinA}{a}$=$\frac{\sqrt{3}cosB}$.
∴sinB=$\sqrt{3}$cosB,可得tanB=$\sqrt{3}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$…4分
(Ⅱ)∵sinAcosC=-sinAcos(A+B)=-sinAcos(A+$\frac{π}{3}$),
∴-sinAcos(A+$\frac{π}{3}$)=-sinA($\frac{1}{2}$cosA-$\frac{\sqrt{3}}{2}$sinA)=-$\frac{1}{2}$sin(2A+$\frac{π}{3}$)+$\frac{\sqrt{3}}{4}$,
∵0$<A<\frac{2π}{3}$,
∴$\frac{π}{3}$<2A+$\frac{π}{3}$<$\frac{5π}{3}$,
∴sinAcosC∈[$\frac{-2+\sqrt{3}}{4}$,$\frac{2+\sqrt{3}}{4}$]…10分

點(diǎn)評(píng) 本題主要考查了正弦定理,三角形內(nèi)角和定理,正弦函數(shù)的圖象和性質(zhì)及兩角和的余弦函數(shù)公式的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在直角坐標(biāo)系xOy中,直線l的直角坐標(biāo)方程為x-y+4=0,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}cosα\\ y=sinα\end{array}\right.(α$為參數(shù))
(Ⅰ)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}$),求點(diǎn)P關(guān)于直線l的對(duì)稱(chēng)點(diǎn)P0的直角坐標(biāo);
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.($\sqrt{8}$)${\;}^{-\frac{2}{3}}$-(3π)0+$\sqrt{(-2)^{2}}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,A=2B,且3sinC=5sinB,則cosB=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={y|y=log2x,0<x<1},B={y|y=($\frac{1}{2}$)x,x>1},則(∁RA)∩B=(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,1)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)h(x)=x2-mx,g(x)=lnx.
(Ⅰ)當(dāng)m=-1時(shí),若函數(shù)h(x)與g(x)在x=x0處的切線平行,求兩切線間的距離;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖在△ABC中,$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NC}$,P是BN上的一點(diǎn),若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+$\frac{1}{5}$$\overrightarrow{AC}$,則實(shí)數(shù)λ的值為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,$AB=AC=2,\;∠\;BAC=90°,\;A{A_1}=2\sqrt{2}$,且三棱柱的所有頂點(diǎn)都在同一球面上,則該球的表面積是16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.計(jì)算:
(1)${({\frac{25}{9}})^{\frac{1}{2}}}+{3^0}-{({\frac{3}{4}})^{-1}}$
(2)$\frac{1}{2}lg25+lg2-lg10-{log_2}9•{log_3}$2.

查看答案和解析>>

同步練習(xí)冊(cè)答案