分析 (Ⅰ)由正弦定理及已知可解得tanB=$\sqrt{3}$,結(jié)合范圍B∈(0,π),即可求得B的值.
(Ⅱ)利用三角形內(nèi)角和定理及兩角和的余弦函數(shù)公式化簡(jiǎn)可得sinAcosC=-$\frac{1}{2}$sin(2A+$\frac{π}{3}$)+$\frac{\sqrt{3}}{4}$,結(jié)合范圍0$<A<\frac{2π}{3}$,利用正弦函數(shù)的圖象和性質(zhì)即可得解取值范圍.
解答 (本題滿(mǎn)分為10分)
解:(Ⅰ)∵由正弦定理可得$\frac{a}{sinA}=\frac{sinB}$,$\frac{sinA}{a}$=$\frac{\sqrt{3}cosB}$.
∴sinB=$\sqrt{3}$cosB,可得tanB=$\sqrt{3}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$…4分
(Ⅱ)∵sinAcosC=-sinAcos(A+B)=-sinAcos(A+$\frac{π}{3}$),
∴-sinAcos(A+$\frac{π}{3}$)=-sinA($\frac{1}{2}$cosA-$\frac{\sqrt{3}}{2}$sinA)=-$\frac{1}{2}$sin(2A+$\frac{π}{3}$)+$\frac{\sqrt{3}}{4}$,
∵0$<A<\frac{2π}{3}$,
∴$\frac{π}{3}$<2A+$\frac{π}{3}$<$\frac{5π}{3}$,
∴sinAcosC∈[$\frac{-2+\sqrt{3}}{4}$,$\frac{2+\sqrt{3}}{4}$]…10分
點(diǎn)評(píng) 本題主要考查了正弦定理,三角形內(nèi)角和定理,正弦函數(shù)的圖象和性質(zhì)及兩角和的余弦函數(shù)公式的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{1}{2}$) | B. | (0,1) | C. | ($\frac{1}{2}$,1) | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com