已知c>0,且c≠1,設(shè)p:函數(shù)y=cx在R上單調(diào)遞減;q:函數(shù)f(x)=x2-2cx+1在(
1
2
,+∞)上為增函數(shù),若“p且q”為假,“p或q”為真,求實(shí)數(shù)c的取值范圍.
解∵函數(shù)y=cx在R上單調(diào)遞減,∴0<c<1.(2分)
即p:0<c<1,
∵c>0且c≠1,∴¬p:c>1.(3分)
又∵f(x)=x2-2cx+1在(
1
2
,+∞)上為增函數(shù),∴c≤
1
2

即q:0<c≤
1
2

∵c>0且c≠1,∴¬q:c>
1
2
且c≠1.(5分)
又∵“p或q”為真,“p且q”為假,
∴p真q假,或p假q真.(6分)
①當(dāng)p真,q假時(shí),{c|0<c<1}∩{c|c>
1
2
,且c≠1}={c|
1
2
<c<1
}.(8分)
②當(dāng)p假,q真時(shí),{c|c>1}∩{c|0<c
1
2
}=∅.[(10分)]
綜上所述,實(shí)數(shù)c的取值范圍是{c|
1
2
<c<1
}.(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題p:“存在實(shí)數(shù)a,使直線x+ay-2=0與圓x2+y2=1有公共點(diǎn)”,命題q:“存在實(shí)數(shù)a,使點(diǎn)(a,1)在橢圓
x2
8
+
y2
2
=1
內(nèi)部”,若命題“p且?q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x-m(m∈R),g(x)=ax2+
1
2
ax+1
(a∈R),h(x)=2|x-a|
(Ⅰ)設(shè)A:存在實(shí)數(shù)x使得f(x)≤0(m∈R)成立;B:當(dāng)a=-2時(shí),不等式g(x)>0有解.若“A”是“B”的必要不充分條件,求實(shí)數(shù)m的取值范圍;
(Ⅱ)設(shè)C:函數(shù)y=h(x)在區(qū)間(4,+∞)上單調(diào)遞增;D:?x∈R,不等式g(x)>0恒成立.請(qǐng)問,是否存在實(shí)數(shù)a使“非C”為真命題且“C∨D”也為真命題?若存在,請(qǐng)求實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題p:
x+2
x-3
≥0
,q:x∈Z,若“p且q”與“非q”同時(shí)為假命題,求x的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題P:函數(shù)f(x)=x2+mx+1有兩個(gè)不相同的零點(diǎn)且為負(fù)數(shù);命題q:關(guān)于x的方程x2-2(m-2)x+m=0沒有實(shí)數(shù)根.
(Ⅰ)求實(shí)數(shù)m的取值范圍,使命題p為真命題;
(Ⅱ)若“¬p或q”為真命題,“¬p且q”為假命題,求實(shí)數(shù)m值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)命題p:平面α∩平面β=l,若m⊥l,則m⊥β;命題q:函數(shù)y=cos(x-
π
2
)的圖象關(guān)于直線x=
π
2
對(duì)稱.則下列判斷正確的是( 。
A.p為真B.¬q為假C.p∨q為假D.p∧q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知命題“p或q”為真,“非p”為假,則必有( 。
A.p真q假B.q真p假
C.q真p真D.p真,q可真可假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

“10a>10b”是“l(fā)ga>lgb”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

條件,條件,則p是q的(    ).
A.充分不必要條件B.必要不充分條件充要條件   D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案