分析 正數(shù)a,b滿足a+2b=1,可得$\frac{1}{a}+\frac{1}$=(a+2b)($\frac{1}{a}+\frac{1}$),展開,再利用基本不等式的性質(zhì)即可得出.
解答 解:∵正數(shù)a,b滿足a+2b=1,可得$\frac{1}{a}+\frac{1}$=(a+2b)($\frac{1}{a}+\frac{1}$)=3+$\frac{2b}{a}$+$\frac{a}$
≥3+2$\sqrt{\frac{2b}{a}•\frac{a}}$=3+2$\sqrt{2}$,當(dāng)且僅當(dāng)a=$\sqrt{2}$b,a+2b=1時(shí)即:a=$\sqrt{2}-1$,b=1$-\frac{\sqrt{2}}{2}$取等號(hào).
因此$\frac{1}{a}+\frac{1}$的最小值為:3+2$\sqrt{2}$.
故答案為:$3+2\sqrt{2}$.
點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x=4+\frac{3}{\sqrt{13}}t}\\{y=3+\frac{2}{\sqrt{13}}t}\end{array}\right.$(t為參數(shù)) | B. | $\left\{\begin{array}{l}{x=3+\frac{3}{\sqrt{13}}t}\\{y=4+\frac{2}{\sqrt{13}}t}\end{array}\right.$(t為參數(shù)) | ||
C. | $\left\{\begin{array}{l}{x=4+\frac{2}{\sqrt{13}}t}\\{y=3+\frac{3}{\sqrt{13}}t}\end{array}\right.$(t為參數(shù)) | D. | $\left\{\begin{array}{l}{x=3+\frac{2}{\sqrt{13}}t}\\{y=4+\frac{3}{\sqrt{13}}t}\end{array}\right.$(t為參數(shù)) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A=B=C | B. | A=(B∩C) | C. | (A∪B)=C | D. | A?B?C |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
ξ | 1 | 2 | 3 | 4 |
P | $\frac{1}{4}$ | $\frac{1}{3}$ | $\frac{1}{6}$ | $\frac{1}{4}$ |
A. | $\frac{29}{12}$ | B. | $\frac{131}{144}$ | C. | $\frac{11}{144}$ | D. | $\frac{179}{144}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com