6.已知點A(1,3),B(2,-3),C(m,0),向量$\overrightarrow{AB}•\overrightarrow{BC}=0$,則實數(shù)m的值是( 。
A.20B.21C.22D.23

分析 求出向量的坐標(biāo),利用數(shù)量積為0,求解即可.

解答 解:點A(1,3),B(2,-3),C(m,0),
$\overrightarrow{AB}$=(1,-6),$\overrightarrow{BC}$=(m-2,3)
向量$\overrightarrow{AB}•\overrightarrow{BC}=0$,
可得m-2-18=0解得m=20.
故選:A.

點評 本題考查向量的坐標(biāo)運算,數(shù)量積公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知命題p:?x∈R,x2+2x+3=0,則¬p是?x∈R,x2+2x+3≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知{an},{bn}為兩非零有理數(shù)列(即對任意的i∈N*,ai,bi均為有理數(shù)),{dn}為一無理數(shù)列(即對任意的i∈N*,di為無理數(shù)).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0對任意的n∈N*恒成立,試求{dn}的通項公式.
(2)若{dn2}為有理數(shù)列,試證明:對任意的n∈N*,(an+bndn-andn2)(1+dn2)=1+dn恒成立的充要條件為$\left\{\begin{array}{l}{a_n}=\frac{1}{1-d_n^4}\\{b_n}=\frac{1}{1+d_n^2}\end{array}$.
(3)已知sin2θ=$\frac{24}{25}$(0<θ<$\frac{π}{2}$),dn=$\root{3}{{tan(n•\frac{π}{2})+{{(-1)}^n}θ}}$,對任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立,試計算bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.2016屆高三某次聯(lián)考之后,某中學(xué)的數(shù)學(xué)教師對A班和B班共n名學(xué)生的數(shù)學(xué)成績進(jìn)行了統(tǒng)計(滿分150分),得到如下各分?jǐn)?shù)段內(nèi)的男生人數(shù)統(tǒng)計表和各個分?jǐn)?shù)段人數(shù)的頻率分布直方圖.

 組數(shù) 分組 男生 占本組的頻率
 第一組[80,90) 12 0.6
 第二組[90,100) 10 p
 第三組[100,110) 10 0.5
 第四組[110,120) a 0.4
 第五組[120,130) 3 0.3
 第六組[130,140] 6 0.6
(1)求n,a,p的值和頻率分布直方圖中第二組矩形的高;
(2)分?jǐn)?shù)在[130,140]的男生中,A班有4人,從這6個男生中任選2人進(jìn)行學(xué)習(xí)經(jīng)驗交流,求取到2人中至少一名是B班男生的概率;
(3)若110分(含110分)以上為優(yōu)秀.
(i)完成下面的2×2列聯(lián)表,并求出男生和女生的優(yōu)秀率;
          成績
性別
 優(yōu)秀不優(yōu)秀  總計
 男生   
 女生   
 總計   
(ii)根據(jù)上面表格的數(shù)據(jù),判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績與性別有關(guān)”?
附表及公式:
 P(K2≥k) 0.1000.050 0.010 0.001 
 k 2.706 3.841 6.63510.828 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求證:關(guān)于x的方程ax2+bx+c=0有一個根為2的充要條件是4a+2b+c=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=(m+nx)3=a0+a1x+a2x2+a3x3,mn≠0,則$\frac{{{a_0}{a_3}}}{{{a_1}{a_2}}}$的值為( 。
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和Sn=k•3n-m,且a1=3,a3=27.
(I)求證:數(shù)列{an}是等比數(shù)列;
(II)若anbn=log3an+1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,MN為⊙O的直徑,PD、PN是切線,切點分別為D和N.
(1))求證:MD∥OP;
(2)若⊙O的半徑等于2,求MD•OP的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.第24屆冬奧會將于2022年在我國北京和張家口舉行,為了搞好接待工作,組委會招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男,女志愿者中分別有10人和6人喜愛運動,其余人不喜愛運動.
( I)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜愛運動不喜愛運動總計
1016
614
總計30
( II)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.10的前提下認(rèn)為性別與喜愛運動有關(guān)?
( III)如果從喜歡運動的女志愿者中(其中恰有4人會外語),抽取2名負(fù)責(zé)翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?
附:${Χ^2}=\frac{{n({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}}{{{n_{1+}}•{n_{2+}}•{n_{+1}}•{n_{+2}}}}$
獨立檢驗臨界值表:
P(χ2≥k00.400.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

同步練習(xí)冊答案