分析 (1)將x=ρcosθ,y=ρsinθ代入,即可求得曲線C的直角坐標方程;
(2)當α=$\frac{π}{3}$時,求得直線l的參數方程,代入拋物線方程,利用韋達定理及|PA|+|PB|=$|{{t_1}-{t_2}}|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}$,即可求得|PA|+|PB|的值.
解答 解:(1)由$ρ=\frac{2cosθ}{{{{sin}^2}θ}}得{ρ^2}{sin^2}θ=2ρcosθ$,
將x=ρcosθ,y=ρsinθ代入,整理得:y2=2x,
所以曲線C的直角坐標方程為y2=2x;…(5分)
(2)因為$α=\frac{π}{3}$,直線l的參數方程為$\left\{\begin{array}{l}x=\frac{1}{2}+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.(t為參數)$,代入y2=2x,得3t2-4t-4=0,
設A,B兩點對應的參數分別為t1,t2,則${t_1}+{t_2}=\frac{4}{3}$,${t_1}{t_2}=-\frac{4}{3}$
∴|PA|+|PB|=$|{{t_1}-{t_2}}|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}$=$\frac{8}{3}$,
|PA|+|PB|的值$\frac{8}{3}$.…(10分)
點評 本題考查拋物線的極坐標方程,直線的參數方程,直線與拋物線的位置關系,考查韋達定理及弦長公式的應用,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,e2) | D. | (e2,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 100πcm3 | B. | $\frac{500π}{3}c{m^3}$ | C. | 400πcm3 | D. | $\frac{4000π}{3}c{m^3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 664 | B. | 844 | C. | 968 | D. | 1204 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -5 | B. | -1 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com