已知函數(shù),其中x∈[0,3],求f(x)的最大值和最小值.
【答案】分析:令t=2x,則可將函數(shù)轉(zhuǎn)化為一個(gè)二次函數(shù),然后根據(jù)二次函數(shù)在定區(qū)間上的最值問題,即可得到(x)的最大值和最小值.
解答:解:(1)∵f(x)=(2x2-5•2x-6(0≤x≤3),
令t=2x,
∵0≤x≤3,
∴1≤t≤8
所以有:(1≤t≤8)
所以:當(dāng)時(shí),h(t)是減函數(shù);當(dāng)時(shí),h(t)是增函數(shù);
,f(x)max=h(8)=18.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是指數(shù)函數(shù)在定區(qū)間上的值域,及二次函數(shù)在定區(qū)間上的值域,其中利用換元法,將問題轉(zhuǎn)化為一個(gè)二次函數(shù)問題是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,其中x∈(0,1]
(Ⅰ)當(dāng)a=數(shù)學(xué)公式時(shí),求f(x)的最小值;
(Ⅱ)在定義域內(nèi),f(x)>0恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)已知函數(shù)(其中x≥1且x≠2).

   (1)求函數(shù)的反函數(shù) 

   (2)設(shè),求函數(shù)最小值及相應(yīng)的x值;

   (3)若不等式對(duì)于區(qū)間上的每一個(gè)x值都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省金華市東陽(yáng)市南馬高中高三(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(其中x∈R,A>0,ω>0)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)點(diǎn)為
(1)求f(x)的解析式;
(2)已知m∈R,p:關(guān)于x的不等式f(x)≥m2+2m-2對(duì)恒成立;q:函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年黑龍江省哈爾濱九中高考數(shù)學(xué)四模試卷(理科)(解析版) 題型:選擇題

已知函數(shù),其中x∈R,則下列結(jié)論中正確的是( )
A.f(x)是最小正周期為π的偶函數(shù)
B.f(x)的一條對(duì)稱軸是
C.f(x)的最大值為2
D.將函數(shù)的圖象左移得到函數(shù)f(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南通市四校高三聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(其中x∈R).
求:
①函數(shù)f(x)的最小正周期;  
②函數(shù)f(x)的單調(diào)遞減區(qū)間;
③函數(shù)f(x)圖象的對(duì)稱軸.

查看答案和解析>>

同步練習(xí)冊(cè)答案