【題目】已知函數(shù),為自然對數(shù)的底數(shù),).

(1)若函數(shù)僅有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),有兩個(gè)零點(diǎn)).且滿足.

【答案】(1);(2)證明見解析.

【解析】試題分析:

(1)由函數(shù)的解析式可得則滿足題意時(shí),方程必?zé)o解,分類討論:①當(dāng)時(shí),符合題意;②當(dāng)時(shí),,據(jù)此可得.即實(shí)數(shù)的取值范圍是.

(2)由(1)的結(jié)論可得,知當(dāng)時(shí),的唯一極小值點(diǎn),且,.要證明,即證.,可轉(zhuǎn)化為,據(jù)此構(gòu)造函數(shù),結(jié)合函數(shù)的性質(zhì)可知在區(qū)間上是減函數(shù),,等價(jià)于成立,則原命題得證.

試題解析:

(1)

,

,得

因?yàn)?/span>僅有一個(gè)極值點(diǎn),

所以關(guān)于的方程必?zé)o解,

①當(dāng)時(shí),無解,符合題意;

②當(dāng)時(shí),由,得,

故由,得.

故當(dāng)時(shí),若,

,此時(shí)為減函數(shù),

,則,此時(shí)為增函數(shù),

所以的唯一極值點(diǎn),

綜上,可得實(shí)數(shù)的取值范圍是.

(2)由(1),知當(dāng)時(shí),的唯一極值點(diǎn),且是極小值點(diǎn),

又因?yàn)楫?dāng)時(shí),,

,

所以當(dāng)時(shí),有一個(gè)零點(diǎn)

當(dāng)時(shí),有另一個(gè)零點(diǎn),

,

.

所以.

下面再證明,即證.

,得,

因?yàn)楫?dāng)時(shí),為減函數(shù),

故只需證明,

也就是證明,

因?yàn)?/span>,

由①式,

可得.

.

,

因?yàn)?/span>為區(qū)間上的減函數(shù),且,所以,即

在區(qū)間上恒成立,

所以在區(qū)間上是減函數(shù),即,所以

即證明成立,

綜上所述,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 有極值,且函數(shù)的極值點(diǎn)是的極值點(diǎn),其中是自然對數(shù)的底數(shù).(極值點(diǎn)是指函數(shù)取得極值時(shí)對應(yīng)的自變量的值)

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)當(dāng)時(shí),若函數(shù)的最小值為,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,⊥平面,底面為梯形,, ,,,的中點(diǎn)

Ⅰ)證明:∥平面;

(Ⅱ)求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是 (  )

A. “若,則,或”的否定是“若,或

B. a,b是兩個(gè)命題,如果a是b的充分條件,那么的必要條件.

C. 命題“,使 得”的否定是:“,均有

D. 命題“ 若,則”的否命題為真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】德國數(shù)學(xué)家科拉茨1937年提出一個(gè)著名的猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.對于科拉茨猜想,目前誰也不能證明,也不能否定.現(xiàn)在請你研究:如果對正整數(shù)(首項(xiàng))按照上述規(guī)則進(jìn)行變換后的第9項(xiàng)為1(注:1可以多次出現(xiàn)),則的所有不同值的個(gè)數(shù)為( )

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定圓,動(dòng)圓過點(diǎn)且與圓相切,記圓心的軌跡為.

1)求軌跡的方程;

2)設(shè)點(diǎn)上運(yùn)動(dòng),關(guān)于原點(diǎn)對稱,且,當(dāng)的面積最小時(shí), 求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】青少年“心理健康”問題越來越引起社會(huì)關(guān)注,某校對高一600名學(xué)生進(jìn)行了一次“心理健康”知識(shí)測試,并從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖。

分組

頻數(shù)

頻率

[50,60)

2

0.04

[60,70)

8

0.16

[70,80)

10

[80,90)

[90,100]

14

0.28

合計(jì)

1.00

                                                             

(1)填寫答題卡頻率分布表中的空格,補(bǔ)全頻率分布直方圖,并標(biāo)出每個(gè)小矩形對應(yīng)的縱軸數(shù)據(jù);

(2)請你估算學(xué)生成績的平均數(shù)及中位數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點(diǎn),直線.

(1)求與圓相切且與直線垂直的直線方程

(2)在直線為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對于圓上任一點(diǎn)都有為一常數(shù)試求所有滿足條件的點(diǎn)的坐標(biāo).

【答案】(1)(2)答案見解析.

【解析】試題分析:

(1)設(shè)所求直線方程為利用圓心到直線的距離等于半徑可得關(guān)于b的方程,解方程可得,則所求直線方程為

(2)方法1:假設(shè)存在這樣的點(diǎn),由題意可得,,然后證明為常數(shù)為即可.

方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則據(jù)此得到關(guān)于的方程組,求解方程組可得存在點(diǎn)對于圓上任一點(diǎn),都有為常數(shù).

試題解析:

(1)設(shè)所求直線方程為,即

∵直線與圓相切,∴,得

∴所求直線方程為

(2)方法1:假設(shè)存在這樣的點(diǎn),

當(dāng)為圓軸左交點(diǎn)時(shí),

當(dāng)為圓軸右交點(diǎn)時(shí),

依題意,,解得,(舍去),或.

下面證明點(diǎn)對于圓上任一點(diǎn),都有為一常數(shù).

設(shè),則

,

從而為常數(shù).

方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則,

,將代入得,

,即

恒成立,

,解得(舍去),

所以存在點(diǎn)對于圓上任一點(diǎn),都有為常數(shù).

點(diǎn)睛:求定值問題常見的方法有兩種:

(1)從特殊入手,求出定值,再證明這個(gè)值與變量無關(guān).

(2)直接推理、計(jì)算,并在計(jì)算推理的過程中消去變量,從而得到定值.

型】解答
結(jié)束】
22

【題目】已知函數(shù)的導(dǎo)函數(shù)為,其中為常數(shù).

(1)當(dāng)時(shí)的最大值,并推斷方程是否有實(shí)數(shù)解

(2)若在區(qū)間上的最大值為-3,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)的定義域?yàn)?/span>R,且存在實(shí)常數(shù),使得對于定義域內(nèi)任意,都有成立,則稱此函數(shù)完美函數(shù).

(1)判斷函數(shù)是否為“完美函數(shù)”.若它是“完美函數(shù)”,求出所有的的取值的集合;若它不是,請說明理由.

(2)已知函數(shù)完美函數(shù)”,是偶函數(shù).且當(dāng)0時(shí),.的值.

查看答案和解析>>

同步練習(xí)冊答案