【題目】某自來水廠的蓄水池有噸水,水廠每小時可向蓄水池中注水噸,同時蓄水池又向居民小區(qū)不間斷供水,小時內供水總量為噸,其中.
(Ⅰ)從供水開始到第幾小時,蓄水池中的存水量最少? 最少水量是多少噸?
(Ⅱ)若蓄水池中水量少于噸時,就會出現供水緊張現象,請問:在一天的小時內,大約有幾小時出現供水緊張現象?
【答案】(Ⅰ)6(Ⅱ)8
【解析】
試題(Ⅰ)函數應用題,關鍵在于正確理解題意:存水量為蓄水池原有水量加上注水量,減去供水量,即存水量,這是一個二次函數,求其最值,需明確定義域與對稱軸之間關系:因為,所以當時,,(Ⅱ)先由題意得:y≤80時,就會出現供水緊張.由此建立關于x的不等關系,最后解此不等式即得一天中會有多少小時出現這種供水緊張的現象.
試題解析:(Ⅰ))設供水小時,水池中存水噸.則
當時,,
故從供水開始到第小時,蓄水池中的存水量最少,最少水量為噸.
(Ⅱ)令x;則x2=6t,即y=400+10x2﹣120x;
依題意400+10x2﹣120x<80,得x2﹣12x+32<0,
解得,4<x<8,即,;
即由,所以每天約有8小時供水緊張.
答:一天小時內大約有小時出現供水緊張.
科目:高中數學 來源: 題型:
【題目】為了了解創(chuàng)建文明城市過程中學生對創(chuàng)建工作的滿意情況,相關部門對某中學的100名學生進行調查.得到如下的統(tǒng)計表:
滿意 | 不滿意 | 合計 | |
男生 | 50 | ||
女生 | 15 | ||
合計 | 100 |
已知在全部100名學生中隨機抽取1人對創(chuàng)建工作滿意的概率為.
(1)在上表中相應的數據依次為;
(2)是否有充足的證據說明學生對創(chuàng)建工作的滿意情況與性別有關?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在上是增函數,則的取值范圍是( 。
A. B. C. D.
【答案】C
【解析】
若函數f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數,則x2﹣ax+3a>0且f(2)>0,根據二次函數的單調性,我們可得到關于a的不等式,解不等式即可得到a的取值范圍.
若函數f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數,
則當x∈[2,+∞)時,
x2﹣ax+3a>0且函數f(x)=x2﹣ax+3a為增函數
即,f(2)=4+a>0
解得﹣4<a≤4
故選:C.
【點睛】
本題考查的知識點是復合函數的單調性,二次函數的性質,對數函數的單調區(qū)間,其中根據復合函數的單調性,構造關于a的不等式,是解答本題的關鍵.
【題型】單選題
【結束】
10
【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=,x∈(-2,2).
(1) 判斷f(x)的奇偶性并說明理由;
(2) 求證:函數f(x)在(-2,2)上是增函數;
(3) 若f(2+a)+f(1-2a)>0,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+2mx+2m+3(m∈R),若關于x的方程f(x)=0有實數根,且兩根分別為x1,x2,則(x1+x2)x1x2,的最大值為()
A. B. 2C. 3D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于的不等式,其中為大于0的常數。
(1)若不等式的解集為,求實數的取值范圍;
(2)若不等式的解集為,且中恰好含有一個整數,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)與y軸的交點為A,B(點A位于點B的上方),F為左焦點,原點O到直線FA的距離為 b.
(1)求橢圓C的離心率;
(2)設b=2,直線y=kx+4與橢圓C交于不同的兩點M,N,求證:直線BM與直線AN的交點G在定直線上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com