【題目】已知二次函數(shù)的定義域恰是不等式的解集,其值域為,函數(shù)的定義域為,值域為.
(1)求定義域和值域;
(2)試用單調性的定義法解決問題:若存在實數(shù),使得函數(shù)在上單調遞減,上單調遞增,求實數(shù)的取值范圍并用表示;
(3)是否存在實數(shù),使成立?若存在,求實數(shù)的取值范圍,若不存在,說明理由.
【答案】(1),;(2),;(3)存在,.
【解析】
(1)解不等式得定義域,由二次函數(shù)的性質可得值域;
(2)假設存在,滿足題意,設且,作差,按單調性定義分析可得;
(3)求導函數(shù),分類討論,得出的單調性,從而求得值域,再由,列出不等式組,可得的取值范圍。
(1),解得,∴,即。
,又,∴,∴。
(2)假設存在,滿足題意,
設且,
,
顯然,因此當,,當,,
當,,因此,,
,,因此,,
綜上。,∴。
∴,。
(3),
若,則,是上的增函數(shù),時,,,即,
當時,,∴,
若,則當時,,單調遞減,時,,單調遞增,
若,則,,即,不滿足,
若,則當時,遞減,∴
∴,解得,
綜上的取值范圍是。
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐PABCD的底面為正方形,PD底面ABCD.設平面PAD與平面PBC的交線為.
(1)證明:平面PDC;
(2)已知PDAD1,Q為上的點,QB=,求PB與平面QCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系內,動點到定點的距離與到定直線的距離之比為
(1)求動點的軌跡的方程;
(2)若軌跡上的動點到定點的距離的最小值為1,求的值;
(3)設點、是軌跡上兩個動點,直線、與軌跡的另一交點分別為、,且直線、的斜率之積等于,問四邊形的面積是否為定值?請說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】自由購是通過自助結算方式購物的一種形式.某大型超市為調查顧客使用自由購的情況,隨機抽取了100人,統(tǒng)計結果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數(shù) | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數(shù) | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)現(xiàn)隨機抽取1名顧客,試估計該顧客年齡在且未使用自由購的概率;
(Ⅱ)從被抽取的年齡在使用自由購的顧客中,隨機抽取3人進一步了解情況,用表示這3人中年齡在的人數(shù),求隨機變量的分布列及數(shù)學期望;
(Ⅲ)為鼓勵顧客使用自由購,該超市擬對使用自由購的顧客贈送1個環(huán)保購物袋.若某日該超市預計有5000人購物,試估計該超市當天至少應準備多少個環(huán)保購物袋.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖為某地區(qū)2006年~2018年地方財政預算內收入、城鄉(xiāng)居民儲蓄年末余額折線圖.根據(jù)該折線圖可知,該地區(qū)2006年~2018年( )
A.財政預算內收入、城鄉(xiāng)居民儲蓄年末余額均呈增長趨勢
B.財政預算內收入、城鄉(xiāng)居民儲蓄年末余額的逐年增長速度相同
C.財政預算內收入年平均增長量高于城鄉(xiāng)居民儲蓄年末余額年平均增長量
D.城鄉(xiāng)居民儲蓄年末余額與財政預算內收入的差額逐年增大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),給出下列命題:
①若既是奇函數(shù)又是偶函數(shù),則;
②若是奇函數(shù),且,則至少有三個零點;
③若在上不是單調函數(shù),則不存在反函數(shù);
④若的最大值和最小值分別為、,則的值域為
則其中正確的命題個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點P(2,1).
(1)求橢圓C的方程,并求其離心率;
(2)過點P作x軸的垂線l,設點A為第四象限內一點且在橢圓C上(點A不在直線l上),點A關于l的對稱點為A',直線A'P與C交于另一點B.設O為原點,判斷直線AB與直線OP的位置關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com