8.已知函數(shù)$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)用函數(shù)單調(diào)性定義證明f(x)在(-∞,+∞)上是增函數(shù),并求出f(x)的值域.

分析 (1)直接利用奇函數(shù)的定義判斷函數(shù)為定義域上的奇函數(shù);
(2)利用函數(shù)的單調(diào)性定義證明函數(shù)為(-∞,+∞)上的增函數(shù),再把函數(shù)解析式變形求得函數(shù)值域.

解答 (1)解:∵$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$的定義域為R,且f(-x)=$\frac{{2}^{-x}-1}{{2}^{-x}+1}$=$\frac{\frac{1-{2}^{x}}{{2}^{x}}}{\frac{1+{2}^{x}}{{2}^{x}}}$=$-\frac{{2}^{x}-1}{{2}^{x}+1}$=-f(x),
∴f(x)是奇函數(shù);         
(2)證明:設(shè)x1,x2∈(-∞,+∞),且x1<x2,
則f(x1)-f(x2)=$\frac{{2}^{{x}_{1}}-1}{{2}^{{x}_{1}}+1}-\frac{{2}^{{x}_{2}}-1}{{2}^{{x}_{2}}+1}$=$\frac{{2}^{{x}_{1}+{x}_{2}}+{2}^{{x}_{1}}-{2}^{{x}_{2}}-1-{2}^{{x}_{1}+{x}_{2}}-{2}^{{x}_{2}}+{2}^{{x}_{1}}+1}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$
=$\frac{2({2}^{{x}_{1}}-{2}^{{x}_{2}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$.
∵x1<x2,∴${2}^{{x}_{1}}-{2}^{{x}_{2}}<0$,則$\frac{2({2}^{{x}_{1}}-{2}^{{x}_{2}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$<0.
∴f(x1)<f(x2).
故f(x)在(-∞,+∞)上是增函數(shù).
由$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$=$\frac{{2}^{x}+1-2}{{2}^{x}+1}=1-\frac{2}{{2}^{x}+1}$,且2x+1>1,∴-2$<-\frac{2}{{2}^{x}+1}<0$,
則f(x)∈(-1,1).
即f(x)的值域為(-1,1).

點評 本題考查函數(shù)的定義域及其求法,考查了利用定義證明函數(shù)的單調(diào)性,訓(xùn)練了函數(shù)值域的求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=lg\frac{x+1}{x-1}+lg(x-1)+lg(a-x)$ (a>1).
(I)求函數(shù)定義域并判斷是否存在一個實數(shù)a,使得函數(shù)y=f(x)的圖象關(guān)于某一條垂直于x軸的直線對稱?若存在,求出這個實數(shù)a;若不存在,說明理由.
(II)當(dāng)f(x)的最大值為2時,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知$f(\frac{x}{2}-1)=2x+3$,則f(4)=23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={1,2,4},B={x|x2=1},那么A∪B=( 。
A.{1}B.{1,2,4}C.{-1,1,2,4}D.{2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知O為△ABC的外心,$AB=2AC=2,\overrightarrow{AB}•\overrightarrow{AC}=-1$,若$\overrightarrow{AO}={x_1}\overrightarrow{AB}+{x_2}\overrightarrow{AC}$,則x1+x2的值為( 。
A.1B.$\frac{11}{6}$C.2D.$\frac{13}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實數(shù)x,y滿足x>y,則下列關(guān)系式恒成立的是( 。
A.x3>y3B.x2>y2C.ln(x2+1)>ln(y2+1)D.$\frac{1}{{x}^{2}+1}$>$\frac{1}{{y}^{2}+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求下列復(fù)數(shù)的模和輻角(模保留根號;輻角為特殊角的保留π,輻角為非特殊角的用弧度制表示,并保留4位有效數(shù)字):
(1)-$\sqrt{3}$;
(2)4+2i;
(3)-2+5i;
(4)-4-3i;
(5)$\frac{1}{2}-\frac{\sqrt{3}}{2}$i;
(6)2+3i;
(7)-3+$\frac{1}{2}$i;
(9)2-3i;
(10)-3$-\frac{1}{2}$i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則它的外接球的體積為( 。
A.B.$\frac{8}{3}π$C.$\frac{4}{9}π$D.$\frac{4}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)A={x|3x+6=0},則A=( 。
A.-2B.{2}C.{-2}D.2∈A

查看答案和解析>>

同步練習(xí)冊答案