PM2.5是指大氣中直徑小于或等于2.5微米的原粒物,也稱可入肺顆粒物,它對空氣質(zhì)量和能見度等有重要影響.近幾年,我國氣象部門加強(qiáng)了對空氣PM2.5含量的監(jiān)測,如果空氣中PM2.5的濃度高于10微克/立方米,則對人的呼吸系統(tǒng)造成危害,長沙市一監(jiān)測點連續(xù)監(jiān)測了一天中0~12時內(nèi)PM2.5含量的變化情況,其濃度W(t)(微克/立方米)隨時刻t的變化可近似表示如:
W(t)=
5
2
(t-4)2+40,0≤t<6
k(t-6)2-(t-6)+ln[(t-6)+1]+50,6≤t≤12

(1)設(shè)k=1,根據(jù)目前狀況,長沙市PM2.5含量暫定小于或等于50微克/立方米視為達(dá)標(biāo),求這0~12時內(nèi)哪些時間段是達(dá)標(biāo)的?
(2)已知k>0,現(xiàn)已知當(dāng)t∈(6,12]時,PM2.5的濃度始終大于50微克/立方米,求k的取值范圍.
考點:函數(shù)模型的選擇與應(yīng)用,分段函數(shù)的應(yīng)用
專題:計算題,應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)當(dāng)0≤t<6時,解
5
2
(t-4)2+40≤50,當(dāng)6≤t≤12時,(t-6)2-(t-6)+ln[(t-6)+1]+50≤50;從而求時間段;
(2)結(jié)合(1)知,k≥1.
解答: 解:(1)當(dāng)0≤t<6時,
5
2
(t-4)2+40≤50,
解得,2≤t<6;
當(dāng)6≤t≤12時,
(t-6)2-(t-6)+ln[(t-6)+1]+50≤50;
解得,t=6;
故這0~12時內(nèi)2到6時間段內(nèi)是達(dá)標(biāo)的;
(2)由(1)知,當(dāng)k=1時,恰好(t-6)2-(t-6)+ln[(t-6)+1]+50≥50;
故k≥1.
點評:本題考查函數(shù)在實際問題中的應(yīng)用及分段函數(shù)的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)f(k)表示k的最大奇因數(shù),例如:f(1)=1,f(2)=1,f(3)=3,f(4)=1.
(1)f(1)+f(3)+f(5)+…+f(2n-1)=
 

(2)f(1)+f(2)+f(3)+…+f(2n)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
|log3x,0<x≤3
1
3
x2-
10
3
x+8,x>3
,若a,b,c,d是互不相同的四個正數(shù),且f(a)=f(b)=f(c)=f(d),則abcd的取值范圍是(  )
A、(21,25)
B、(21,24)
C、(20,24)
D、(20,25)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在空間直角坐標(biāo)系中有長方體ABCD-A1B1C1D1,AB=
2
,BC=
2
2
,AA1=1,E是C1D1的中點,求證:平面AA1E⊥平面BB1E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,已知PC⊥平面ABC,AB=BC=CA=PC,求二面角B-AP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1的左焦點F1的坐標(biāo)為(-
3
,0),F(xiàn)2是它的右焦點,點M是橢圓C上一點,△MF1F2的周長等于4+2
3

(1)求橢圓C的方程;
(2)過定點P(0,2)作直線l與橢圓C交于不同的兩點A,B,且OA⊥OB(其中O為坐標(biāo)原點),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

表提供了某廠節(jié)能降低技術(shù)改造后產(chǎn)生甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).
x3456
y2.5344.5
根據(jù)表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=0.7x+a,則實數(shù)a的值為(  )
A、0.35B、0.3
C、0.4D、0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}各項均為正數(shù),且滿足an+1=an-an2
(Ⅰ)求證:對一切n≥2,都有an
1
n+2
;
(Ⅱ)已知前n項和為S,求證:對一切n≥2,都有S2n-Sn-1<ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的是( 。
①f(x)=x0與g(x)=1是同一個函數(shù);
②y=f(x)與y=f(x+1)有可能是同一個函數(shù);
③y=f(x)與y=f(t)是同一個函數(shù);
④定義域和值域相同的函數(shù)是同一個函數(shù).
A、①②B、②③C、②④D、①③

查看答案和解析>>

同步練習(xí)冊答案