已知0<x<π,sinx+cosx=
1
5

(1)求sinx-cosx的值;
(2)求tanx的值.
考點:同角三角函數(shù)基本關(guān)系的運用
專題:計算題,三角函數(shù)的求值
分析:(1)將已知等式兩邊平方,利用完全平方公式展開,求出2sinxcosx的值,進而確定出sinx-cosx的值;
(2)由(1)知,sinx=
4
5
,cosx=-
3
5
,可求tanx的值.
解答: 解:(1)∵0<x<π,sinx+cosx=
1
5
,
∴(sinx+cosx)2=1+2sinxcosx=
1
25
,即-2sinxcosx=
24
25
,且sinx-cosx>0,
∴(sinx-cosx)2=1-2sinxcosx=
49
25
,即sinx-cosx=
7
5

(2)由(1)知,sinx=
4
5
,cosx=-
3
5
,
∴tanx=-
4
3
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(x,y)與兩定點M1,M2距離的比是一個正數(shù)m,求點M的軌跡方程.并說明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=loga
1+x
1-x
(a>0,a≠1).
(1)判斷f(x)的奇偶性,并說明理由; 
(2)若0<a<1,求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
16
+
y2
4
=1的弦AB的中點M的坐標為(2,1),求直線AB的方程,并求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{xn}滿足x1=0,xn+1=-xn2+xn+c(n∈N*).求證:0<c<1是數(shù)列{xn}是單調(diào)遞增數(shù)列的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(α+
π
4
)=
1
2
,且-
π
2
<α<0
,則
2sin2α+sin2α
cos(α-
π
4
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-
1
2
x2
+3x-2lnx在[t,t+1]上不單調(diào),則實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實數(shù)x,y滿足
x-y+1≤0
x+y-1≥0
x-2y+a≥0
,若點(x,y)構(gòu)成的平面區(qū)域中恰好有2個整點(橫縱坐標均為整數(shù)),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若全集U={x∈R|x2≤4},A={x∈R||x+1|≤1},則∁UA=
 

查看答案和解析>>

同步練習(xí)冊答案