5.計(jì)算:23+log25=40.

分析 直接利用對(duì)數(shù)運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:23+log25=8×5=40.
故答案為:40.

點(diǎn)評(píng) 本題考查對(duì)數(shù)運(yùn)算法則的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知α∈(π,2π),tanα=$\frac{1}{2}$,則sinα+cosα等于( 。
A.-$\frac{3}{5}$$\sqrt{5}$B.$-\frac{2}{5}\sqrt{5}$C.$\frac{3}{5}\sqrt{5}$D.$-\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.直線l與橢圓4x2+y2=4交于P,Q兩點(diǎn),若OP⊥OQ,則l在兩坐標(biāo)軸上的截距乘積最小值為(  )
A.$\frac{5}{6}$B.$\frac{8}{5}$C.2D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知△ABC的面積S滿足1$≤S≤\sqrt{3}$,且$\overrightarrow{AC}•\overrightarrow{CB}=-2$,∠ACB=θ.
(1)求函數(shù)f(θ)=sin($θ-\frac{π}{4}$)+4$\sqrt{2}$sinθcosθ-cos($θ+\frac{π}{4}$)-2的最大值;
(2)若$\overrightarrow{m}$=(sin2A,cos2A),$\overrightarrow{n}$=(cos2B,sin2B),求|2$\overrightarrow{m}$-3$\overrightarrow{n}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=x2-4x(x∈[0,5])的值域?yàn)椋ā 。?table class="qanwser">A.[-4,+∞)B.[-4,5]C.[-4,0]D.[0,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)Sn={1,2,…,n},若X是Sn的子集,把X中的所有數(shù)的和稱為X的“容量”(規(guī)定φ的容量為0),若X的容量為奇(偶)數(shù),則稱X為Sn的奇(偶)子集.
(1)求證:Sn的奇子集與偶子集個(gè)數(shù)相等;
(2)求證:當(dāng)n≥3時(shí),Sn的所有奇子集的容量之和等于所有偶子集的容量之和;
(3)求n≥3時(shí)Sn的所有奇子集的容量和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若定義在區(qū)間(-1,0)內(nèi)的函數(shù)f(x)=log2a(x+1)為減函數(shù),則a的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.(0,$\frac{1}{2}$]C.( $\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知下列命題
①b2=ac,則a,b,c成等比數(shù)列;
②若{an}為等差數(shù)列,且常數(shù)c>0,則數(shù)列{can}為等比數(shù)列;
③若{an}為等比數(shù)列,且常數(shù)c>0,則數(shù)列{can}為等比數(shù)列;
④常數(shù)列既為等差數(shù)列,又是等比數(shù)列.
其中,真命題的個(gè)數(shù)為(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍.又點(diǎn)P(4,1)在橢圓上,求該橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案