已知函數(shù)f(x)=x2,g(x)=2elnx(x>0)(e為自然對(duì)數(shù)的底數(shù)).
(1)求F(x)=f(x)-g(x)(x>0)的單調(diào)區(qū)間及最小值;
(2)是否存在一次函數(shù)y=kx+b(k,bR),使得f(x)≥kx十b且g(x)≤kx+b對(duì)一切x>0恒成立?若存在,求出該一次函數(shù)的表達(dá)式;若不存在,請(qǐng)說明理由.
(1)當(dāng)時(shí),F(xiàn)(x)在上單調(diào)遞減;當(dāng)時(shí),F(xiàn)(x)在上單調(diào)遞增.
;(2)存在一次函數(shù),使得當(dāng)x>0時(shí),,且恒成立.
【解析】
試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及最值等數(shù)學(xué)知識(shí),考查學(xué)生的分析問題解決問題的能力和計(jì)算能力.第一問,對(duì)求導(dǎo),利用,解出單調(diào)區(qū)間,通過單調(diào)性判斷出最小值所在位置,并且求出即可;第二問,通過第一問的求解可以知道與圖像有且僅有一個(gè)公共點(diǎn),猜想所求的直線就是在公共點(diǎn)處的公切線,下面只需對(duì)猜想進(jìn)行證明即可,只需證明當(dāng)x>0時(shí),,且恒成立即可,進(jìn)一步轉(zhuǎn)化為證明,即可,通過構(gòu)造函數(shù),利用導(dǎo)數(shù)求最值進(jìn)行證明.
試題解析:(1) (x>0),
令F′(x)=0,得(舍),
∴當(dāng)時(shí),F(xiàn)′(x)<0,F(xiàn)(x)在上單調(diào)遞減;
當(dāng)時(shí),F(xiàn)′(x)>0,F(xiàn)(x)在上單調(diào)遞增.
∴當(dāng)時(shí),F(xiàn)(x)有極小值,也是最小值,
即.
∴F(x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,最小值為0.(7分)
(2)由(1)知,f(x)與g(x)的圖象有且僅有一個(gè)公共點(diǎn),
∴猜想:一次函數(shù)的圖象就是f(x)與g(x)的圖象在點(diǎn)處的公切線,
其方程為.
下面證明:當(dāng)x>0時(shí),,且恒成立.
∵,∴對(duì)x>0恒成立.
又令,∴,
∴當(dāng)時(shí),,G(x)在上單調(diào)遞減;
當(dāng)時(shí),G′(x)>0,G(x)在上單調(diào)遞增.
∴當(dāng)時(shí),G(x)有極小值,也是最小值,
即,∴G(x)≥0,即恒成立.
故存在一次函數(shù),使得當(dāng)x>0時(shí),,且恒成立.(14分)
考點(diǎn):1.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;2.利用導(dǎo)數(shù)求函數(shù)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西省高三第六次模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知定義在區(qū)間上的函數(shù)的圖象如右圖所示,則的
圖象為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市高三下學(xué)期考前模擬(二診)理科數(shù)學(xué)試卷(解析版) 題型:選擇題
執(zhí)行如圖所示的程序框圖,則輸出的為( )
(A)20 (B)14 (C)10 (D)7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市高三下學(xué)期考前模擬(二診)文科數(shù)學(xué)試卷(解析版) 題型:選擇題
對(duì)任意實(shí)數(shù),定義運(yùn)算:,設(shè),則的值是( )
(A) (B) (C) (D)不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市高三下學(xué)期考前模擬(二診)文科數(shù)學(xué)試卷(解析版) 題型:選擇題
重慶市教委為配合教育部公布高考改革新方案,擬定在重慶中學(xué)進(jìn)行調(diào)研,廣泛征求高三年級(jí)學(xué)生的意見。重慶中學(xué)高三年級(jí)共有700名學(xué)生,其中理科生500人,文科生200人,現(xiàn)采用分層抽樣的方法從中抽取14名學(xué)生參加調(diào)研,則抽取的理科生的人數(shù)為( )
(A)2 (B)4 (C)5 (D)10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建省龍巖市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
定義在R上的函數(shù)f(x),滿足f(m+n2)=f(m)+2[f(n)]2,m,nR,且f(1):≠0,則f(2014)的值為____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆北京市高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)已知 , .求下列式子的值
(1); (2) (3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古巴彥淖爾市高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)設(shè)函數(shù)f(x)=|2x-1|+|2x-3| , x∈R.
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古巴彥淖爾市高三10月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知集合,0<<2,則是( )
A.2<x<4 B.
C. D.或
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com