$\overline x$ | $\overline y$ | $\overline w$ | $\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}$ | $\sum_{i=1}^n{{{({w_i}-\overline w)}^2}}$ | $\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}$ | $\sum_{i=1}^n{({w_i}-\overline w)({y_i}-\overline y)}$ |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
分析 (Ⅰ)根據(jù)散點圖,即可判斷出,
(Ⅱ)先建立中間量w=$\sqrt{x}$,建立y關(guān)于w的線性回歸方程,根據(jù)公式求出w,問題得以解決;
(Ⅲ)(i)年宣傳費x=90時,代入到回歸方程,計算即可,
(ii)求出預(yù)報值得方程,根據(jù)函數(shù)的性質(zhì),即可求出.
解答 解:(Ⅰ)由散點圖可以判斷,$y=c+d\sqrt{x}$適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型;
(Ⅱ)令w=$\sqrt{x}$,先建立y關(guān)于w的線性回歸方程,由于d=68,c=563-68×6.8=100.6,
所以y關(guān)于w的線性回歸方程為y=100.6+68w,
因此y關(guān)于x的回歸方程為y=100.6+68$\sqrt{x}$,
(Ⅲ)(i)由(Ⅱ)知,當x=90時,年銷售量y的預(yù)報值y=100.6+68$\sqrt{90}$=745.2,
年利潤z的預(yù)報值z=745.2×0.2-90=59.04,
(ii)根據(jù)(Ⅱ)的結(jié)果可知,年利潤z的預(yù)報值z=0.2(100.6+68$\sqrt{x}$)-x=-x+13.6$\sqrt{x}$+20.12,
當$\sqrt{x}$=6.8時,年利潤的預(yù)報值最大為66.36千元.
點評 本題主要考查了線性回歸方程和散點圖的問題,準確的計算是本題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a+c>b+d | B. | a-c>b-d | C. | ad<bc | D. | $\frac{a}{c}$>$\frac82omcld$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4n | B. | $\frac{1}{3}({4^n}-1)$ | C. | $\frac{4}{3}({4^n}-1)$ | D. | $\frac{1}{3}({4^n}+8)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 9 | D. | $\frac{27}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “至少有1名女生”與“都是女生” | B. | “至少有1名女生”與“至多1名女生” | ||
C. | “恰有1名女生”與“恰有2名女生” | D. | “至少有1名男生”與“都是女生” |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0] | B. | (0,+∞) | C. | (-∞,0) | D. | [0,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com