5.設(shè)集合A={x|x>1},B={x|x>2},則( 。
A.A⊆BB.B⊆AC.A∩B={x|x>0}D.A∪B={x|x>0}

分析 根據(jù)子集的定義B的元素都是A的元素,即可得出結(jié)論.

解答 解:∵集合A={x|x>1},B={x|x>2},
∴B的元素都是A的元素,
∴B⊆A.
故選:B.

點(diǎn)評(píng) 本題考查集合關(guān)系的判斷方法,子集的概念,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,曲線C上的點(diǎn)S(x,y)到點(diǎn)M(1,0)的距離與它到直線x=4的距離之比為$\frac{1}{2}$.
(1)求曲線C的方程;
(2)若點(diǎn)A(x1,y1)與點(diǎn)P(x2,y2)在曲線C上,x12+x22=4且點(diǎn)A在第一象限,點(diǎn)P在第二象限,點(diǎn)B與點(diǎn)A關(guān)于原點(diǎn)對(duì)稱,求三角形△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.運(yùn)行如圖所示的語句,則輸出的結(jié)果T=(  )
A.25B.125C.625D.1350

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.拋物線C1:x2=2py(p>0)的焦點(diǎn)F是C2:y=$\frac{1}{2}$x2+1的頂點(diǎn),過F點(diǎn)的直線l1,l2的斜率分別是k1,k2,且k1•k2=-2,直線l1與C1,C2交于A,C,M,直線l2與C1,C2交于B,D,N
(Ⅰ)求拋物線C1的方程,并證明:M,N分別是AC,BD的中點(diǎn),且直線MN過定點(diǎn).
(Ⅱ)①求△MFN面積的最小值
②設(shè)△ABF,△MNF,△CDF面積分別為S1,S2,S3,求證:S22=4S1•S3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合A={x|-2<x<3},B={x|x2-4≥0},則A∩B=(  )
A.[-2,1)B.(-1,2]C.[2,3)D.[-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在等比數(shù)列{an}中,a5a10+a7a8=2×106,則lga1+lga2+…+lga14=(  )
A.42B.45C.36D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+5),x>2}\\{a{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}$,若f(-2016)=e,則a=( 。
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題正確的是( 。
A.若p∧q為假命題,則p、q均為假命題
B.函數(shù)f(x)=x2-x-6的零點(diǎn)是(3,0)或(-2,0)
C.對(duì)于命題p:?x∈R,使得x2-x-6>0,則¬p:?x∈R,均有x2-x-6≤0
D.命題“若x2-x-6=0,則x=3”的否命題為“若x2-x-6=0,則x≠3”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.證明:$\sqrt{1}$+$\sqrt{2}$+$\sqrt{3}$+…+$\sqrt{n}$<$\frac{2}{3}$[(n+1)$\sqrt{n+1}$-1].

查看答案和解析>>

同步練習(xí)冊(cè)答案