17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+5),x>2}\\{a{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}$,若f(-2016)=e,則a=( 。
A.2B.1C.-1D.-2

分析 由已知條件利用分段函數(shù)的性質(zhì)先由函數(shù)的周期性求出f(2016)=f(1),再由指數(shù)的性質(zhì)能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+5),x>2}\\{a{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}$,f(-2016)=e,x>2時,函數(shù)是周期函數(shù),周期為5,
f(-2016)=f(2016)=f(2015+1)=f(1)=ae=e,
∴a=1
故選:B.

點評 本題考查函數(shù)值的求法,抽象函數(shù)的應(yīng)用,是基礎(chǔ)題,解題時要認真審題,解題時要認真審題,注意分段函數(shù)的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=$\frac{2^x}{{{2^x}+1}}$+ax,若f(ln3)=2,則f(ln$\frac{1}{3}$)等于( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知:函數(shù)f(x)=$\frac{sin2x}{e^x}$的圖象在(0,f(0))處的切線恰好是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一條漸近線,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合A={x|x>1},B={x|x>2},則( 。
A.A⊆BB.B⊆AC.A∩B={x|x>0}D.A∪B={x|x>0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.給出一個如圖所示的程序框圖,若要使輸入的x值與輸出的y值相等,則這樣的x值的個數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖所示,圓C中,弦AB的長度為4,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)f(x)=2sin($\frac{x}{3}$+$\frac{π}{6}$)的圖象向左平移$\frac{π}{4}$個單位,再向上平移3個單位,得到函數(shù)g(x)的圖象,則g(x)的解析式為( 。
A.g(x)=2sin($\frac{x}{3}$-$\frac{π}{4}$)-3B.g(x)=2sin($\frac{x}{3}$+$\frac{π}{4}$)+3C.g(x)=2sin($\frac{x}{3}$-$\frac{π}{12}$)+3D.g(x)=2sin($\frac{x}{3}$-$\frac{π}{12}$)-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)U=R,若集合A={0,1,2},B={x|x2-2x-3>0},則A∩∁UB=(  )
A.{0,1}B.{0,2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足:${a_{n+1}}=a_n^2-2(n∈N*)$,且${a_1}=a+\frac{1}{a}(0<a<1)$.
(Ⅰ)證明:an+1>an;
(Ⅱ)若不等式$\frac{1}{a_1}+\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_1}{a_2}{a_3}}}+…+\frac{1}{{{a_1}{a_2}{a_3}…{a_n}}}<\frac{1}{2}$對任意n∈N*都成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案