【題目】三棱錐A﹣BCD及其側(cè)視圖、俯視圖如圖所示,設(shè)M,N分別為線段AD,AB的中點(diǎn),P為線段BC上的點(diǎn),且MN⊥NP.
(1)證明:P是線段BC的中點(diǎn);
(2)求二面角A﹣NP﹣M的余弦值.
【答案】
(1)證明:由三棱錐A﹣BCD及其側(cè)視圖、俯視圖可知,在三棱錐A﹣BCD中:
平面ABD⊥平面CBD,AB=AD=BD=CD=CB=2
設(shè)O為BD的中點(diǎn),連接OA,OC
于是OA⊥BD,OC⊥BD 所以BD⊥平面OACBD⊥AC
因?yàn)镸,N分別為線段AD,AB的中點(diǎn),所以MN∥BD,MN⊥NP,故BD⊥NP
假設(shè)P不是線段BC的中點(diǎn),則直線NP與直線AC是平面ABC內(nèi)相交直線
從而BD⊥平面ABC,這與∠DBC=60°矛盾,所以P為線段BC的中點(diǎn)
(2)解:以O(shè)為坐標(biāo)原點(diǎn),OB,OC,OA分別為x,y,z軸建立空間直角坐標(biāo)系,
則A(0,0, ),M( ,O, ),N( ,0, ),P( , ,0)
于是 , ,
設(shè)平面ANP和平面NPM的法向量分別為 和
由 ,則 ,設(shè)z1=1,則
由 ,則 ,設(shè)z2=1,則
cos = = =
所以二面角A﹣NP﹣M的余弦值
【解析】(1)用線面垂直的性質(zhì)和反證法推出結(jié)論,(2)先建空間直角坐標(biāo)系,再求平面的法向量,即可求出二面角A﹣NP﹣M的余弦值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次抽樣調(diào)查中測得樣本的6組數(shù)據(jù),得到一個(gè)變量關(guān)于的回歸方程模型,其對應(yīng)的數(shù)值如下表:
2 | 3 | 4 | 5 | 6 | 7 | |
(1)請用相關(guān)系數(shù)加以說明與之間存在線性相關(guān)關(guān)系(當(dāng)時(shí),說明與之間具有線性相關(guān)關(guān)系);
(2)根據(jù)(1)的判斷結(jié)果,建立關(guān)于的回歸方程并預(yù)測當(dāng)時(shí),對應(yīng)的值為多少(精確到).
附參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:
,,相關(guān)系數(shù)公式為:.
參考數(shù)據(jù):
,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】5名師生站成一排照相留念,其中教師1人,男生2人,女生2人.
(1)求兩名女生相鄰而站的概率;
(2)求教師不站中間且女生不站兩端的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)若,求的值;
(2)若,求的值;
(3)若是展開式中所有無理項(xiàng)的二項(xiàng)式系數(shù)和,數(shù)列是各項(xiàng)都大于1的數(shù)組成的數(shù)列,試用數(shù)學(xué)歸納法證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,函數(shù).
若的最大值為0,記,求的值;
當(dāng)時(shí),記不等式的解集為M,求函數(shù),的值域是自然對數(shù)的底數(shù);
當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)常數(shù)a使方程sinx+ cosx=a在閉區(qū)間[0,2π]上恰有三個(gè)解x1 , x2 , x3 , 則x1+x2+x3= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,,,且 , ,分別為△的三邊所對的角.
(Ⅰ)求角的大小;
(Ⅱ)若,,成等比數(shù)列,且, 求邊c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)若函數(shù)在時(shí)有極值,求表達(dá)式;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com