設(shè)隨機變量a服從正態(tài)分布N(u,9),若p(ξ>3)=p(ξ<1),則u=( 。
A、2B、3C、9D、1
考點:正態(tài)分布曲線的特點及曲線所表示的意義
專題:計算題,概率與統(tǒng)計
分析:根據(jù)p(ξ>3)=p(ξ<1),由正態(tài)曲線的對稱性得u=
3+1
2
=2.
解答: 解:∵隨機變量ξ服從正態(tài)分布N(u,9),p(ξ>3)=p(ξ<1),
∴u=
3+1
2
=2
故選:A.
點評:本題考查正態(tài)分布,正態(tài)曲線有兩個特點:(1)正態(tài)曲線關(guān)于直線x=μ對稱;(2)在正態(tài)曲線下方和x軸上方范圍內(nèi)的區(qū)域面積為1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某市調(diào)研機構(gòu)對該市工薪階層對“樓市限購令”態(tài)度進行調(diào)查,抽調(diào)了50名市民,他們月收入頻數(shù)分布表和對“樓市限購令”贊成人數(shù)如下表:
月收入(單位:百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)5c1055
頻率0.1ab0.20.10.1
贊成人數(shù)4812531
(Ⅰ)若所抽調(diào)的50名市民中,收入在[35,45)的有15名,求a,b,c的值,并完成頻率分布直方圖; 
(Ⅱ)若從收入(單位:百元)在[55,65)的被調(diào)查者中隨機選取兩人進行追蹤調(diào)查,求選中的2人至少有1人不贊成“樓市限購令”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2-4x-5=0},B={x|x2=1},則A∩B=(  )
A、{1}
B、{1,-1,5}
C、{-1}
D、{1,-1,-5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過圓x2-2x+y2=0的圓心且與直線x+2y=0平行的直線方程是( 。
A、x+2y-1=0
B、x-2y-2=0
C、x-2y+1=0
D、x+2y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,三邊長a,b,c滿足a3+b3=c3,則△ABC是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+lnx-
k(x-2)
x
,其中k為常數(shù).
(1)若k=0,求曲線y=f(x)在點(1,f(1))處的切線方程.
(2)若k=5,求證:f(x)有且僅有兩個零點;
(3)若k為整數(shù),且當x>2時,f(x)>0恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下四個結(jié)論:
①若隨機變量ξ服從正態(tài)分布N(1,δ2)且P(ξ≤4)=0.84,則P(ξ≤-2)=0.16;
②?a∈R*,使得f(x)=
-x2-x+1
ex
-a有三個零點;
③設(shè)直線回歸方程為
y
=3-2x,則變量x增加一個單位時,y平均減少2個單位;
④若命題p:?x∈R,ex>x+1,則¬p為真命題;
以上四個結(jié)論正確的是
 
(把你認為正確的結(jié)論都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an>0,a1=1,an+2=
1
an+1
,a100=a96,則a2014+a3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當a>1,0<b<1時,logab+
1
logab
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案