【題目】已知函數 .
(1)當時,求函數的極值;
(2)是否存在實數,使得當時,函數的最大值為?若存在,取實數的取值范圍,若不存在,請說明理由.
【答案】(1)見解析(2).
【解析】試題分析:(1)先求導數,再求導函數零點,列表分析導函數符號變化規(guī)律,確定極值(2)先求函數導數,根據導函數零點情況分類討論,根據函數取最大值情況研究實數的取值范圍:當時,函數先增后減,最大值為;當時,再根據兩根大小進行討論,結合函數圖像確定滿足題意的限制條件,解出實數的取值范圍
試題解析:(1)當時, ,則,
化簡得,所以函數在上單調遞增,在上單調遞減,
且,
所以函數在處取到極小值為,在處取得極大值.
(2)由題意,
①當時,函數在上單調遞增,在上單調遞減,此時,不存在實數,使得當時,函數的最大值為,
②當時,令有或,
(1)當時,函數在上單調遞增,顯然符合題意.
(2)當即時,函數在和上單調遞增,
在上單調遞減,
此時由題意,只需,解得,又,
所以此時實數的取值范圍是.
(3)當即時,函數在和上單調遞增,
在上單調遞減,要存在實數,使得當時,函數的最大值為,
則,代入化簡得,
,因為恒成立,
故恒有,所以時,所以恒成立,
綜上,實數的取值范圍是.
科目:高中數學 來源: 題型:
【題目】假設關于某設備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖并判斷是否線性相關;
(2)如果線性相關,求線性回歸方程;
(3)估計使用年限為10年時,維修費用是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校舉行了一次安全教育知識競賽,競賽的原始成績采用百分制,已知高三學生的原始成績均分布在內,發(fā)布成績使用等級制,各等級劃分標準見表.
原始成績 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級 | 優(yōu)秀 | 良好 | 及格 | 不及格 |
為了解該校高三年級學生安全教育學習情況,從中抽取了名學生的原始成績作為樣本進行統(tǒng)計,按照的分組作出頻率分布直方圖如圖所示,其中等級為不及格的有5人,優(yōu)秀的有3人.
(1)求和頻率分布直方圖中的的值;
(2)根據樣本估計總體的思想,以事件發(fā)生的頻率作為相應事件發(fā)生的概率,若該校高三學生共1000人,求競賽等級在良好及良好以上的人數;
(3)在選取的樣本中,從原始成績在80分以上的學生中隨機抽取2名學生進行學習經驗介紹,求抽取的2名學生中優(yōu)秀等級的學生恰好有1人的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長是短軸長的倍,且過點.
(1)求橢圓的標準方程;
(2)若的頂點、在橢圓上, 所在的直線斜率為, 所在的直線斜率為,若,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,P是雙曲線 (a>0,b>0,xy≠0)上的動點,F1,F2是雙曲線的焦點,M是∠F1PF2的平分線上一點,且.某同學用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得|OM|=|NF1|=…=a。類似地:P是橢圓 (a>b>0,xy≠0)上的動點,F1,F2是橢圓的焦點,M是∠F1PF2的平分線上一點,且,則|OM|的取值范圍是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com