三棱錐P-ABC的三條側(cè)棱PA、PB、PC兩兩互相垂直,且長(zhǎng)度分別為3、4、5,則三棱錐P-ABC外接球的體積是(  )
A、20
2
π
B、
125
2
6
π
C、
125
2
3
π
D、50π
考點(diǎn):球的體積和表面積,球內(nèi)接多面體
專題:計(jì)算題,空間位置關(guān)系與距離
分析:以PA、PB、PC為過(guò)同一頂點(diǎn)的三條棱,作長(zhǎng)方體如圖,則長(zhǎng)方體的外接球同時(shí)也是三棱錐P-ABC外接球.算出長(zhǎng)方體的對(duì)角線即為球直徑,結(jié)合球的表面積公式,可算出三棱錐P-ABC外接球的體積.
解答: 解:以PA、PB、PC為過(guò)同一頂點(diǎn)的三條棱,作長(zhǎng)方體如圖
則長(zhǎng)方體的外接球同時(shí)也是三棱錐P-ABC外接球.
∵長(zhǎng)方體的對(duì)角線長(zhǎng)為
32+42+52
=5
2

∴球直徑為5
2
,半徑R=
5
2
2

因此,三棱錐P-ABC外接球的體積是
4
3
π×(
5
2
2
3=
125
2
3
π
故選:C.
點(diǎn)評(píng):本題給出三棱錐的三條側(cè)棱兩兩垂直,求它的外接球的體積,著重考查了長(zhǎng)方體對(duì)角線公式和球的體積計(jì)算等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求該四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,F(xiàn)(2,0)是右焦點(diǎn).若A,B為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),且
AF
BF
=0,則直線AB的斜率是( 。
A、±
7
3
B、±
3
7
7
C、±
3
7
D、±
7
7
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從1,2,3,4,7,9六個(gè)數(shù)中任取兩個(gè)數(shù)作為對(duì)數(shù)的底數(shù)和真數(shù),則所有不同的對(duì)數(shù)的值的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)到直線x=6的距離是它到點(diǎn)A(1,0)的距離的2倍,那么動(dòng)點(diǎn)的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)連續(xù)擲聯(lián)系骰子得到的點(diǎn)數(shù)分別為m,n,令平面向量
a
=(m,n),
b
(1,-3).
(1)求使得事件“
a
b
”發(fā)生的概率;
(2)求使得事件“|
a
|≤|
b
|”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an=
n2-1,n為偶數(shù)
2n,n為奇數(shù)
,且f(n)=a1+a2+a3+…+a2n-2+a2n-1,(n∈N*),則f(4)-f(3)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線中心在原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且與圓x2+y2=17相交于A(4,-1),若圓在A點(diǎn)處的切線與雙曲線的漸近線平行,求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,真命題是( 。
A、?x∈(3,+∞),x2>2x+1
B、?x0∈[0,
π
2
],sinx0+cosx0≥2
C、?x0∈R,x02+x0=-1
D、?x∈(
π
2
,π),tanx>sinx

查看答案和解析>>

同步練習(xí)冊(cè)答案