已知雙曲線中心在原點,以坐標(biāo)軸為對稱軸,且與圓x2+y2=17相交于A(4,-1),若圓在A點處的切線與雙曲線的漸近線平行,求此雙曲線方程.
考點:雙曲線的標(biāo)準(zhǔn)方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:先求圓的切線方程,進而得到雙曲線的漸近線方程,再用待定系數(shù)法求雙曲線的方程.
解答: 解:圓在A點的切線l可設(shè)為y=k(x-4)-1.
由題可得
|-4k-1|
k2+1
=
17
,解得k=4,
因為l與雙曲線的一條漸近線平行,雙由曲線的定義可知,
b
a
=4(1),
而點A(4,-1)在雙曲線上,代入可得
16
a2
-
1
b2
=1
(2).
聯(lián)立方程組(1),(2),可以算出a2=
255
16
,b2=255,
所以所求雙曲線方程為16x2-y2=255.
點評:本題考查圓的切線方程,考查雙曲線的方程與性質(zhì),考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和sn,且s4=16,a4=7.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC的三條側(cè)棱PA、PB、PC兩兩互相垂直,且長度分別為3、4、5,則三棱錐P-ABC外接球的體積是(  )
A、20
2
π
B、
125
2
6
π
C、
125
2
3
π
D、50π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(函數(shù)的應(yīng)用)某廠有許多形狀為直角梯形的鐵皮邊角料(如圖),為降低消耗,開源節(jié)流,現(xiàn)要從這些邊角料上截取矩形鐵片(如圖陰影部分)備用,則截取的矩形面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,
1
2an+1
=
1
2an
+1(n∈N*).
(Ⅰ)求證{
1
an
}是等差數(shù)列;
(Ⅱ)若bn=an•an+1,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn(n∈N*),a3=5,S10=100.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2 an+2n求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是正項數(shù)列,a1=1,且點(
an
,an+1)(n∈N*)在函數(shù)y=x2+1的圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=1+
1
anan+1
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB、PC的中點.
(1)求證:
EF
AP
,
AD
共面;
(2)求證:EF⊥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的程序框圖中,當(dāng)n∈N*(n>1)時,函數(shù)fn(x)等于函數(shù)fn-1(x)的導(dǎo)函數(shù),若輸入函數(shù)f1(x)=sinx+cosx,則輸出的函數(shù)fn(x)可化為( 。
A、
2
sin(x+
π
4
B、
2
sin(x-
π
4
C、-
2
sin(x-
π
4
D、-
2
sin(x+
π
4

查看答案和解析>>

同步練習(xí)冊答案