已知x,y滿足約束條件
x+2y-4≤0
x-y-1≤0
x+2≥0
,求目標函數(shù)z=x+2y+2的最大值和最小值.
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:出不等式組對應(yīng)的平面區(qū)域利用z=x+2y+2的幾何意義,即可求z的取值范圍.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域,
由z=x+2y+2,得y=-
1
2
x+
z
2
-1,平移直線y=-
1
2
x+
z
2
-1,由圖象可知當(dāng)直線經(jīng)過點A時,
直線y=-
1
2
x+
z
2
-1的截距最小,此時z最小,
x-y=1
x+2=0
,得
x=-2
y=-3
,即A(-2,-3).
此時z=-2+2×(-3)+2=-6.
由圖象可知當(dāng)直線與x+2y-4=0重合時,
直線y=-
1
2
x+
z
2
-1的截距最大,此時z最大,
此時x+2y=4,z=x+2y+2=4+2=6.
故答案為:-6≤z≤6.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.要求熟練掌握常見目標函數(shù)的幾何意義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=1,前n項和為Sn,an+1=2Sn+1,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3an+1,求數(shù)列{
bn
an
}的前n項和Tn,并證明:1≤Tn
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在△ABC的長邊AB上取AN=AC,BM=BC,點I為三角形ABC的內(nèi)心 求證:
(1)點I是△MNC的外心;
(2)∠MIN=∠ABC+∠BAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},an≥0,a1=0,an+12+an+1-1=an2(n∈N+).請用數(shù)學(xué)歸納法證明:當(dāng)n∈N+時,an<an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(3x+1)=3x2-x+1,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點在原點,始邊與x軸的正半軸重合,終邊經(jīng)過點P(-3,
3
).
(Ⅰ)求sin2α-tanα的值;
(Ⅱ)若函數(shù)f(x)=cos(x-α)cosα-sin(x-α)sinα,求函數(shù)y=
3
f(
π
2
-2x)-2f2(x)在區(qū)間[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+x2-xlna,a>1.
(1)求證函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(2)若函數(shù)y=|f(x)-b+
1
b
|-3有四個零點,求b的取值范圍;
(3)若對于任意的x∈[-1,1]時,都有f(x)≤e2-1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較a3+a+1與a2+a+1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
-
1
3x
與g(x)=a(x2+x-a2-a)同時滿足條件:
①{x|f(x)≥0}⊆{x|g(x)<0};
②?x0∈(-∞,-1)使得f(x0)g(x0)<0成立.
則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案