9.若$\underset{lim}{n→∞}$($\frac{{n}^{3}-1}{{n}^{2}-3n+1}$+an+b)=1,則a+b=-3.

分析 $\frac{{n}^{3}-1}{{n}^{2}-3n+1}$+an+b=(1+a)n+(3+b)+$\frac{8n-4}{{n}^{2}-3n+1}$,$\underset{lim}{n→∞}$($\frac{{n}^{3}-1}{{n}^{2}-3n+1}$+an+b)=1,可得1+a=0,3+b=1,解出即可.

解答 解:∵$\frac{{n}^{3}-1}{{n}^{2}-3n+1}$+an+b=(1+a)n+(3+b)+$\frac{8n-4}{{n}^{2}-3n+1}$,$\underset{lim}{n→∞}$($\frac{{n}^{3}-1}{{n}^{2}-3n+1}$+an+b)=1,
∴1+a=0,3+b=1,
∴a+b=-3.
故答案為:-3.

點(diǎn)評(píng) 本題考查了代數(shù)式的化簡(jiǎn)、極限的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列方程中,以x±2y=0為漸近線的雙曲線是( 。
A.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1C.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,一個(gè)四面體木塊ABCD,在△ABC的面內(nèi)有一點(diǎn)P,要經(jīng)過(guò)點(diǎn)P在平面ABC內(nèi)畫(huà)一條直線l,使l⊥AD,怎樣畫(huà)?寫(xiě)出作法,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.填空:已知ABCD為一個(gè)平行四邊形,對(duì)角線AC與BD相交于點(diǎn)O,則
$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{AC}$;$\overrightarrow{AB}$-$\overrightarrow{AD}$=$\overrightarrow{DB}$;
$\overrightarrow{BA}$-$\overrightarrow{BC}$=$\overrightarrow{CA}$;$\overrightarrow{BC}$-$\overrightarrow{BA}$=$\overrightarrow{AC}$;
$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{BA}$;$\overrightarrow{OD}$-$\overrightarrow{OA}$=$\overrightarrow{AD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=$\frac{1}{2}$sinπx的遞增區(qū)間是[2k-$\frac{1}{2}$,2k+$\frac{1}{2}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.不共面的四點(diǎn)可以確定不同的線段數(shù)為( 。
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-1-x,(-1<x<0)}\\{x,(0≤x≤1)}\end{array}\right.$,則f-1($\frac{1}{3}$)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)x→x0時(shí),|g(x)|≥M(M是一個(gè)正的常數(shù)),f(x)是無(wú)窮大.證明:f(x)g(x)是無(wú)窮大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=-x2+2ax+1.
(1)若y=f(x)在(1,+∞)上單調(diào)遞減,求a的取值范圍.
(2)若a=1時(shí),y=f(x)在區(qū)間[m,n]上的值域?yàn)閇2m,2n],求m,n的值.
(3)記h(a)為y=f(x)在區(qū)間[-4,4]的最小值,求出y=h(a)

查看答案和解析>>

同步練習(xí)冊(cè)答案