(本小題滿分14分)
在平面直角坐標(biāo)系中,橢圓的離心率為,直線被橢圓截得的線段長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點(diǎn)的直線與橢圓交于兩點(diǎn)(不是橢圓的頂點(diǎn)).點(diǎn)在橢圓上,且,直線與軸、軸分別交于兩點(diǎn).
(i)設(shè)直線的斜率分別為,證明存在常數(shù)使得,并求出的值;
(ii)求面積的最大值.
(1).(2)(。┐嬖诔(shù)使得結(jié)論成立.(ⅱ).
解析試題分析:(1)首先由題意得到,即.
將代入可得,
由,可得.得解.
(2)(。┳⒁鈴拇_定的表達(dá)式入手,探求使成立的.
設(shè),則,
得到,
根據(jù)直線BD的方程為,
令,得,即.得到.
由,作出結(jié)論.
(ⅱ)直線BD的方程,
從確定的面積表達(dá)式入手,應(yīng)用基本不等式得解.
試題解析:(1)由題意知,可得.
橢圓C的方程可化簡(jiǎn)為.
將代入可得,
因此,可得.
因此,
所以橢圓C的方程為.
(2)(ⅰ)設(shè),則,
因?yàn)橹本AB的斜率,
又,所以直線AD的斜率,
設(shè)直線AD的方程為,
由題意知,
由,可得.
所以,
因此,
由題意知,
所以,
所以直線BD的方程為,
令,得,即.
可得.
所以,即.
因此存在常數(shù)使得結(jié)論成立.
(ⅱ)直線BD的方程,
令,得,即,
由(。┲,
可得的面積,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e1/e/1xdn44.png" style="vertical-align:middle;" />,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
此時(shí)S取得最大值,
所以的面積的最大值為.
考點(diǎn):橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,三角形面積,基本不等式的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
直線y=kx+b與曲線交于A、B兩點(diǎn),記△AOB的面積為S(O是坐標(biāo)原點(diǎn)).
(1)求曲線的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線.命題p: 直線l1:與拋物線C有公共點(diǎn).命題q: 直線l2:被拋物線C所截得的線段長(zhǎng)大于2.若為假, 為真,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
無論為任何實(shí)數(shù),直線與雙曲線恒有公共點(diǎn).
(1)求雙曲線的離心率的取值范圍;
(2)若直線過雙曲線的右焦點(diǎn),與雙曲線交于兩點(diǎn),并且滿足,求雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分14分)如圖在平面直角坐標(biāo)系中,分別是橢圓的左右焦點(diǎn),頂點(diǎn)的坐標(biāo)是,連接并延長(zhǎng)交橢圓于點(diǎn),過點(diǎn)作軸的垂線交橢圓于另一點(diǎn),連接.
(1)若點(diǎn)的坐標(biāo)為,且,求橢圓的方程;
(2)若,求橢圓離心率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)分別是橢圓的左右焦點(diǎn),是上一點(diǎn)且與軸垂直,直線與的另一個(gè)交點(diǎn)為.
(1)若直線的斜率為,求的離心率;
(2)若直線在軸上的截距為,且,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,曲線由上半橢圓和部分拋物線連接而成,的公共點(diǎn)為,其中的離心率為.
(1)求的值;
(2)過點(diǎn)的直線與分別交于(均異于點(diǎn)),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知P是圓上任意一點(diǎn),點(diǎn)N的坐標(biāo)為(2,0),線段NP的垂直平分線交直線MP于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為C.
(1)求出軌跡C的方程,并討論曲線C的形狀;
(2)當(dāng)時(shí),在x軸上是否存在一定點(diǎn)E,使得對(duì)曲線C的任意一條過E的弦AB,為定值?若存在,求出定點(diǎn)和定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓:的左頂點(diǎn)為,直線交橢圓于兩點(diǎn)(上下),動(dòng)點(diǎn)和定點(diǎn)都在橢圓上.
(1)求橢圓方程及四邊形的面積.
(2)若四邊形為梯形,求點(diǎn)的坐標(biāo).
(3)若為實(shí)數(shù),,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com