3.實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{x-y-1≤0}\\{x-2y+1≥0}\end{array}\right.$,則2x-y的最大值為( 。
A.-$\frac{1}{2}$B.1C.2D.4

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)k的幾何意義,進行平移,結(jié)合圖象得到k=2x-y的最大值.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分ABC).
令k=2x-y得y=2x-k,
平移直線y=2x-k,
由圖象可知當(dāng)直線y=2x-k經(jīng)過點A時,直線y=2x-k的截距最小,由$\left\{\begin{array}{l}{x-y-1=0}\\{x-2y+1=0}\end{array}\right.$,可得A(3,2)
此時k最大.將A(3,2)的坐標(biāo)代入目標(biāo)函數(shù)2×3-2=4,
即2x-y的最大值為4.
故選:D.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決此類問題的基本方法,利用k的幾何意義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某商場對一個月內(nèi)每天的顧客人數(shù)進行統(tǒng)計,得到如圖所示的樣本莖葉圖,則該樣本的中位數(shù)和眾數(shù)分別是( 。
A.46,45B.45,46C.45,45D.47,45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C-sin B.
(I)求角A;
(Ⅱ)若a=4$\sqrt{3}$,b+c=8,求△ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“一支醫(yī)療救援隊里的醫(yī)生和護士,包括我在內(nèi),總共是13名,下面講到人員情況,無論是否把我計算在內(nèi),都不會有任何變化,在這些醫(yī)務(wù)人員中:①護士不少于醫(yī)生;②男醫(yī)生多于女護士;③女護士多于男護士;④至少有一位女醫(yī)生.”由此推測這位說話人的性別和職務(wù)是( 。
A.男護士B.女護士C.男醫(yī)生D.女醫(yī)生

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.(x-$\sqrt{x}$)n的展開式中各項的二項式系數(shù)之和為16,則展開式中x2項的系數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,角A,B,C的對邊分別為a,b,c,若a=4$\sqrt{2}$,b=5,cosA=-$\frac{3}{5}$,則向量$\overrightarrow{BA}$在$\overrightarrow{BC}$方向上的投影為( 。
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{7\sqrt{2}}{2}$D.$\frac{7\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知正△ABC內(nèi)接于半徑為2的圓O,點P是圓O上的一個動點,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍是( 。
A.[0,6]B.[-2,6]C.[0,2]D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.計算:4cos50°-tan40°=( 。
A.$\sqrt{3}$B.$\frac{\sqrt{2}+\sqrt{3}}{2}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若復(fù)數(shù)$z=\frac{-2+3i}{i},i$是虛數(shù)單位,則z在復(fù)平面內(nèi)對應(yīng)的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案