5.已知函數(shù)f(x)=ax+$\frac{a-1}{x}$(a∈R),g(x)=lnx.
(1)當(dāng)a=2時,求函數(shù)h(x)=f(x)-g(x)的最小值;
(2)當(dāng)a>0,對任意x≥1,不等式f(x)-g(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=xsinx+cosx.
(1)若x∈[-$\frac{π}{2}$,$\frac{π}{2}$],求函數(shù)f(x)的最大值與最小值;
(2)若x∈($\frac{π}{3}$,$\frac{π}{2}$),且a<$\frac{cosx}{x}$<b恒成立,求實(shí)數(shù)a,b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.球面上有三點(diǎn)A,B,C組成這個球的一個截面的內(nèi)接三角形的三個頂點(diǎn),其中AB=6,BC=8,AC=10,球心到這個截面的距離為球半徑的一半,則球的表面積為(  )
A.$\frac{400π}{3}$B.150πC.$\frac{500π}{3}$D.$\frac{600π}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x3-ax2(其中a是實(shí)數(shù)),且f′(1)=-3.
(1)求a的值及曲線y=f(x)在點(diǎn)(1,f(x))處的切線方程;
(2)求f(x)在區(qū)間[-1,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2xlnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)經(jīng)過點(diǎn)(0,-2)作函數(shù)f(x)圖象的切線,求該切線的方程;
(3)當(dāng)x∈(1,+∞)時f(x)<λ(x2-1)恒成立,求常數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=$\frac{lnx}{x}$的最大值為( 。
A.$\frac{1}{e}$B.eC.e2D.-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)當(dāng)a=0時,f(x)≥h(x)在(1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時,若函數(shù)k(x)=f(x)-h(x)在區(qū)間(1,3)上恰有兩個不同零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=kx2-lnx(k∈R).
(1)試討論函數(shù)f(x)的單調(diào)性;
(2)若不等式f(x)≥0在區(qū)間(0,+∞)上恒成立,求k的取值范圍,并證明:$\frac{ln2}{{2}^{2}}$+$\frac{ln3}{{3}^{2}}$+$\frac{ln4}{{4}^{2}}$+…+$\frac{lnn}{{n}^{2}}$<$\frac{n-1}{2e}$(n≥2,n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某三棱錐的三視圖如圖所示,該三棱錐的體積是12.

查看答案和解析>>

同步練習(xí)冊答案