8.已知定義在R上的函數(shù)f(x)滿足①f(2-x)=f(x);②f(x+2)=f(x-2);③x1,x2∈[1,3]時(shí),$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則f(2014),f(2015),f(2016)大小關(guān)系為(  )
A.f(2014)>f(2015)>f(2016)B.f(2016)>f(2014)>f(2015)
C.f(2016)=f(2014)>f(2015)D.f(2014)>f(2015)=f(2016)

分析 根據(jù)已知可得函數(shù) f (x)的圖象關(guān)于直線x=1對(duì)稱,周期為4,且在[1,3]上為減函數(shù),進(jìn)而可比較f(2014),f(2015),f(2016)的大小

解答 解:∵函數(shù) f (x)滿足:
①f(2-x)=f(x),故函數(shù)的圖象關(guān)于直線x=1對(duì)稱;
②f(x+2)=f(x-2),故函數(shù)的周期為4;
③x1,x2∈[1,3]時(shí),$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,故函數(shù)在[1,3]上為減函數(shù);
故f(2014)=f(2),
f(2015)=f(3),
f(2016)=f(0)=f(2),
故f (2016)=f (2014)>f (2015),
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的對(duì)稱性,函數(shù)的周期性,函數(shù)的單調(diào)性,從已知的條件中分析出函數(shù)的性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=x${\;}^{-2{m}^{2}+m+3}$ (m∈Z)是偶函數(shù),且f(x)在(0,+∞)上單調(diào)遞增.
(1)求m的值,并確定f(x)的解析式;
(2)g(x)=log2[3-2x-f(x)],求g(x)的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=ax2-lnx(a∈R).
(1)如果函數(shù)f(x)的圖象不在x軸的下方,求實(shí)數(shù)a的取值范圍.
(2)若方程f(x)-k=0在區(qū)間[$\frac{1}{e}$,e]內(nèi)有兩個(gè)不相等的實(shí)根.求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知四棱錐ABCD-A1B1C1D1的底面是邊長(zhǎng)為2的正方形,側(cè)棱AA1⊥底面ABCD,若得二面角A1-BD-C1的大小為60°,求四棱柱ABCD-A1B1C1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.三角形三邊長(zhǎng)分別是6、8、10,那么它最短邊上的高為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=2x3+5$\sqrt{2{x^3}-1}$的最小值是( 。
A.-3?B.1C.$-\frac{21}{4}$?D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知PA⊥矩形ABCD所在的平面,M、N分別是AB、PC的中點(diǎn),若AD=PA=a,AB=$\sqrt{2}$a.
(1)在PC上是否存在一點(diǎn)Q,使得AQ∥平面MND?若存在,求出該點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由;
(2)求二面角N-MD-C大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+3≥0}\\{x≤3}\end{array}\right.$,則z=2x+y的最大值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.函數(shù)f(x)=$\frac{ax+2015b}{{x}^{2}+1}$是定義在(-∞,+∞)上的奇函數(shù),且f($\frac{1}{3}$)=$\frac{3}{10}$.
(1)求實(shí)數(shù)a,b,并確定函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(-1,1)上是增函數(shù);
(3)寫(xiě)出f(x)的單調(diào)減區(qū)間,并判斷f(x)有無(wú)最大值或最小值?如有,寫(xiě)出最大值或最小值.(本小問(wèn)不需說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案