17.已知平面直角坐標(biāo)系 xOy中,過(guò)點(diǎn) P(-1,-2)的直線 l的參數(shù)方程為 $\left\{\begin{array}{l}x=-1+tcos{45°}\\ y=-2+tsin{45°}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為 ρsinθtanθ=2a(a>0),直線 l與曲線C相交于不同的兩點(diǎn)M.N
(Ⅰ)求曲線C和直線 l的普通方程;
(Ⅱ)若|PM|=|MN|,求實(shí)數(shù)a的值.

分析 (Ⅰ)利用極坐標(biāo)方程和直角坐標(biāo)的互化公式求解;
(Ⅱ)結(jié)合直線的參數(shù)方程中參數(shù)的幾何意義求解即可.

解答 解:(Ⅰ)∵$\left\{\begin{array}{l}x=-1+tcos{45°}\\ y=-2+tsin{45°}\end{array}\right.$(t為參數(shù)),
∴直線l的普通方程:x-y-1=0,
∵曲線C的極坐標(biāo)方程為 ρsinθtanθ=2a(a>0),
∴ρ2sin2θ=2aρcosθ(a>0),
∴曲線C的普通方程:y2=2ax;
(Ⅱ)∵y2=2ax;
∴x≥0,
設(shè)直線l上點(diǎn)M、N對(duì)應(yīng)的參數(shù)分別為t1,t2,(t1>0,t2>0),
則|PM|=t1,|PN|=t2,
∵|PM|=|MN|,
∴|PM|=$\frac{1}{2}$|PN|,
∴t2=2t1,
將$\left\{\begin{array}{l}x=-1+tcos{45°}\\ y=-2+tsin{45°}\end{array}\right.$,代人y2=2ax得
t2-2$\sqrt{2}$(a+2)t+4(a+2)=0,
∴t1+t2=2$\sqrt{2}$(a+2),
t1t2=4(a+2),
∵t2=2t1
∴a=$\frac{1}{4}$.

點(diǎn)評(píng) 本題重點(diǎn)考查了曲線的參數(shù)方程和普通方程的互化、極坐標(biāo)方程和直角坐標(biāo)方程的互化等知識(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知拋物線C1:y2=2px(p>0)的焦點(diǎn)為F,拋物線上存在一點(diǎn)G到焦點(diǎn)的距離為3,且點(diǎn)G在圓C:x2+y2=9上.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)已知橢圓C2:$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1(m>n>0)的一個(gè)焦點(diǎn)與拋物線C1的焦點(diǎn)重合,若橢圓C2上存在關(guān)于直線l:y=$\frac{1}{4}x+\frac{1}{3}$對(duì)稱的兩個(gè)不同的點(diǎn),求橢圓C2的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知a,b,c∈R,a2+b2+c2=1.
(1)若a+b+c=0,求a的最大值.
(2)若ab+bc+ca的最大值為M,解不等式|x+1|+|x-1|≥3M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知 sina+cosa=$\sqrt{2}$,a$∈(-\frac{π}{2},\frac{π}{2})$.則 tana=(  )
A.-1B.-$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知實(shí)數(shù)x,y滿足條件 $\left\{\begin{array}{l}x≥0\\ 4x+3y≤4\\ y≥0\end{array}$,則 z=$\frac{x+y+1}{x}$最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.復(fù)數(shù)$\frac{10i}{3+i}$=1+3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若x∈R,則“2x<1”是“-1<x<0”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若$α∈({\frac{π}{2},π}),tanα=-\frac{1}{4}$,則sin(α+π)=-$\frac{\sqrt{17}}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.有5個(gè)英語(yǔ)字母a、b、c、d、e排成一行,則a不排在正中間的位置,且b不排在兩端的概率為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案