20.函數(shù)f(x)=(kx+4)lnx-x(x>1),若f(x)>0的解集為(s,t),且(s,t)中只有一個整數(shù),則實數(shù)k的取值范圍為($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}-1$)..

分析 令f(x)>0,得到kx+4>$\frac{x}{lnx}$,令g(x)=$\frac{x}{lnx}$,結(jié)合函數(shù)圖象求出k的范圍即可.

解答 解:令f(x)>0,得:kx+4>$\frac{x}{lnx}$,
令g(x)=$\frac{x}{lnx}$,則g′(x)=$\frac{lnx-1}{{(lnx)}^{2}}$,
令g′(x)>0,解得:x>e,令g′(x)<0,解得:1<x<e,
故g(x)在(1,e)遞減,在(e,+∞)遞增,
故g(x)≥g(e)=e,
$\left\{\begin{array}{l}{2k+4<\frac{2}{ln2}}\\{4k+4<\frac{4}{ln4}}\\{3k+4>\frac{3}{ln3}}\end{array}\right.$,解得:$\frac{1}{ln3}$-$\frac{4}{3}$<k<$\frac{1}{2ln2}-1$,
故答案為:($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}-1$).

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}為等差數(shù)列,且a3=5,a5=9,數(shù)列{bn}的前n項和Sn=$\frac{2}{3}$bn+$\frac{1}{3}$.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設(shè)cn=an|bn|,求數(shù)列{cn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=ln(x+1)+a(x2-x),其中a∈R
(1)討論函數(shù)f(x)極值點的個數(shù),并說明理由;
(2)若任意x∈(0,+∞),f(x)>0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)△ABC的三內(nèi)角A、B、C的對邊分別是a、b、c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0
(Ⅰ)求角A的大。
(Ⅱ)若a=$\sqrt{3}$,sinC=$\frac{{1+\sqrt{3}}}{2}$sinB,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x-1|+|x-5|,g(x)=$\sqrt{1+{x}^{2}}$.
(1)求f(x)的最小值;
(2)記f(x)的最小值為m,已知實數(shù)a,b滿足a2+b2=6,求證:g(a)+g(b)≤m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系,將曲線C1上的每一個點的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的$\frac{1}{2}$,得到曲線C2,以坐標(biāo)原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=2.
(Ⅰ)求曲線C2的參數(shù)方程;
(Ⅱ)過原點O且關(guān)于y軸對稱點兩條直線l1與l2分別交曲線C2于A、C和B、D,且點A在第一象限,當(dāng)四邊形ABCD的周長最大時,求直線l1的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系中,已知點B(1,1),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,點A的極坐標(biāo)為(4$\sqrt{2}$,$\frac{π}{4}$),直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=a,且l過點A,過點B與直線l平行的直線為l1,l1與曲線C相交于兩點M,N
(Ⅰ)求曲線C上的點到直線l距離的最小值
(Ⅱ)求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,△AB1C1,△B1B2C2,△B2B3C3是三個邊長為2的等邊三角形,且有一條邊在同一直線上,邊B3C3上有5個不同的點P1,P2,P3,P4,P5,設(shè)${m_i}=\overrightarrow{A{C_2}}•\overrightarrow{A{P_i}}$(i=1,2,…,5),則m1+m2+…+m5=90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中的微量元素x,y的含量(單位:毫克),如表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
編號12345
x169178166175180
y7580777081
(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及方差.

查看答案和解析>>

同步練習(xí)冊答案