分析 (Ⅰ)求出曲線C2的普通方程,即可求曲線C2的參數(shù)方程;
(Ⅱ)設(shè)四邊形ABCD的周長為l,設(shè)點(diǎn)A(2cosα,sinα),則l=8cosα+4sinα=4$\sqrt{5}$sin(α+θ),cosθ=$\frac{1}{\sqrt{5}}$,sinθ=$\frac{2}{\sqrt{5}}$,由此,可求直線l1的普通方程.
解答 解:(Ⅰ)曲線C1的極坐標(biāo)方程為ρ=2,直角坐標(biāo)方程為x2+y2=4,將曲線C1上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的$\frac{1}{2}$,得到曲線C2:$\frac{{x}^{2}}{4}$+y2=1,
∴曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù));
(Ⅱ)設(shè)四邊形ABCD的周長為l,設(shè)點(diǎn)A(2cosα,sinα),則l=8cosα+4sinα=4$\sqrt{5}$sin(α+θ),cosθ=$\frac{1}{\sqrt{5}}$,sinθ=$\frac{2}{\sqrt{5}}$,
α+θ=$\frac{π}{2}$+2kπ(k∈Z)時(shí),l取得最大值,此時(shí)cosα=sinθ=$\frac{2}{\sqrt{5}}$,sinα=cosθ=$\frac{1}{\sqrt{5}}$,A($\frac{4}{\sqrt{5}}$,$\frac{1}{\sqrt{5}}$),
∴直線l1的普通方程為y=$\frac{1}{4}$x.
點(diǎn)評(píng) 本題考查求直線l1的普通方程,考查參數(shù)方程的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3+(n+1)×2n | B. | 3+(n+1)×2n | C. | 1+(n+1)×2n | D. | 1+(n-1)×2n |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com